2019-2020年高一數(shù)學(xué) 增效減負(fù) 正弦定理(1)教學(xué)案.doc
《2019-2020年高一數(shù)學(xué) 增效減負(fù) 正弦定理(1)教學(xué)案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高一數(shù)學(xué) 增效減負(fù) 正弦定理(1)教學(xué)案.doc(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高一數(shù)學(xué) 增效減負(fù) 正弦定理(1)教學(xué)案 【三維目標(biāo)】: 一、知識與技能 1.探索并了解基本不等式的證明過程,體會證明不等式的基本思想方法; 2.會用基本不等式解決簡單的最大(?。┲祮栴}; 3.學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等; 4.理解兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的證明以及它的幾何解釋; 二、過程與方法 1.通過實(shí)例探究抽象基本不等式; 2.本節(jié)學(xué)習(xí)是學(xué)生對不等式認(rèn)知的一次飛躍。要善于引導(dǎo)學(xué)生從數(shù)和形兩方面深入地探究不等式的證明,從而進(jìn)一步突破難點(diǎn)。變式練習(xí)的設(shè)計(jì)可加深學(xué)生對定理的理解,并為以后實(shí)際問題的研究奠定基礎(chǔ)。兩個定理的證明要注重嚴(yán)密性,老師要幫助學(xué)生分析每一步的理論依據(jù),培養(yǎng)學(xué)生良好的數(shù)學(xué)品質(zhì) 三、情感、態(tài)度與價值觀 1.通過本節(jié)的學(xué)習(xí),體會數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣 2.培養(yǎng)學(xué)生舉一反三的邏輯推理能力,并通過不等式的幾何解釋,豐富學(xué)生數(shù)形結(jié)合的想象力 【教學(xué)重點(diǎn)與難點(diǎn)】: 重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過程; 難點(diǎn):理解基本不等式等號成立條件及 “當(dāng)且僅當(dāng)時取等號”的數(shù)學(xué)內(nèi)涵 【學(xué)法與教學(xué)用具】: 1.學(xué)法:先讓學(xué)生觀察常見的圖形,通過面積的直觀比較抽象出基本不等式。從生活中實(shí)際問題還原出數(shù)學(xué)本質(zhì),可積極調(diào)動地學(xué)生的學(xué)習(xí)熱情。定理的證明要留給學(xué)生充分的思考空間,讓他們自主探究,通過類比得到答案 2.教學(xué)用具:直角板、圓規(guī)、投影儀(多媒體教室) 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 1. 提問:與哪個大? 2.基本不等式的幾何背景: 如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能在這個圖案中找出一些相等關(guān)系或不等關(guān)系嗎?(教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系)。 二、研探新知 重要不等式 :一般地,對于任意實(shí)數(shù) 、,我們有,當(dāng)且僅當(dāng)時,等號成立。 證明: 所以 注意強(qiáng)調(diào) 當(dāng)且僅當(dāng)時, 注意:(1)等號成立的條件,“當(dāng)且僅當(dāng)”指充要條件; (2) 公式中的字母和既可以是具體的數(shù)字,也可以是比較復(fù)雜的變量式,因此應(yīng)用范圍比較廣泛。 基本不等式:對任意正數(shù)、,有當(dāng)且僅當(dāng)時等號成立。 證法1:可以將基本不等式2看作是基本不等式1的推論。 由基本不等式1,得 當(dāng)且僅當(dāng)時等號成立。即當(dāng)且僅當(dāng)時等號成立。 證法2:當(dāng)且僅當(dāng)即時,取“”。 證法3:要證,只要證,只要證,只要證 因?yàn)樽詈笠粋€不等式成立,所以成立,當(dāng)且僅當(dāng)即時,取“”。 證法4:對于正數(shù)有, 說明: 把和分別叫做正數(shù)的算術(shù)平均數(shù)和幾何平均數(shù),上述不等式可敘述為:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。 上述結(jié)論可推廣至3個正數(shù)。 (1)基本不等式成立的條件是: (2)不等式證明的三種方法:比較法(證法1)、分析法(證法2)、綜合法(證法3) (圖1) (3)的幾何解釋:(如圖1)以為直徑作圓,在直徑上取一點(diǎn), 過作弦,則,從而,而半徑 基本不等式幾何意義是:“半徑不小于半弦” (4)當(dāng)且僅當(dāng)時,取“”的含義:一方面是當(dāng)時取等號,即 ;另一方面是僅當(dāng)時取等號,即 。 (5)如果,那么(當(dāng)且僅當(dāng)時取“”). (6)如果把看作是正數(shù)、的等差中項(xiàng),看作是正數(shù)、的等比中項(xiàng),那么該定理可以敘述為:兩個正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng). 2.在數(shù)學(xué)中,我們稱為、的算術(shù)平均數(shù),稱為、的幾何平均數(shù).本節(jié)定理還可敘述為:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù). 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)設(shè)為正數(shù),證明下列不等式成立:(1);(2) 證明:(1)∵為正數(shù),∴也為正數(shù),由基本不等式得∴原不等式成立。 (2)∵均為正數(shù),由基本不等式得,∴原不等式成立。 例2 已知為兩兩不相等的實(shí)數(shù),求證: 證明:∵為兩兩不相等的實(shí)數(shù),∴,,, 以上三式相加:,所以,. 例3 已知都是正數(shù),求證. 證明:由都是正數(shù),得: ,, ∴,即. 例4 已知函數(shù),求的范圍 例5求證:. 證明:∵, 又, ∴, ∴,即. 四、鞏固深化,反饋矯正 1.已知都是正數(shù),求證: 2.已知都是正數(shù),求證:; 3. 思考題:若,求的最大值 五、歸納整理,整體認(rèn)識 1.算術(shù)平均數(shù)與幾何平均數(shù)的概念; 2.基本不等式及其應(yīng)用條件; 3.不等式證明的三種常用方法。 小結(jié):正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù) 六、承上啟下,留下懸念 七、板書設(shè)計(jì)(略) 八、課后記:- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高一數(shù)學(xué) 增效減負(fù) 正弦定理1教學(xué)案 2019 2020 年高 數(shù)學(xué) 增效 減負(fù) 正弦 定理 教學(xué)
鏈接地址:http://m.appdesigncorp.com/p-2610635.html