2019-2020年高中數(shù)學(xué)知識(shí)精要 14.平面向量教案 新人教A版.doc
《2019-2020年高中數(shù)學(xué)知識(shí)精要 14.平面向量教案 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)知識(shí)精要 14.平面向量教案 新人教A版.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)知識(shí)精要 14.平面向量教案 新人教A版1、向量有關(guān)概念:(1)向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。如已知A(1,2),B(4,2),則把向量按向量(1,3)平移后得到的向量是_(答:(3,0)(2)零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;(3)單位向量:給定一個(gè)非零向量,與同向且長(zhǎng)度為1的向量叫向量的單位向量. 的單位向量是;(4)相等向量:長(zhǎng)度相等且方向相同的兩個(gè)向量叫相等向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):如果向量的基線互相平行或重合則稱(chēng)這些向量共線或平行,記作:,規(guī)定零向量和任何向量平行。提醒:相等向量一定是共線向量,但共線向量不一定相等;兩個(gè)向量平行與與兩條直線平行是不同的兩個(gè)概念:兩個(gè)平行向量的基線平行或重合, 但兩條直線平行不包含兩條直線重合;平行向量無(wú)傳遞性?。ㄒ?yàn)橛?;三點(diǎn)共線共線;(6)相反向量:長(zhǎng)度相等方向相反的向量叫做相反向量。的相反向量是。如下列命題:(1)若,則。(2)兩個(gè)向量相等的充要條件是它們的起點(diǎn)相同,終點(diǎn)相同。(3)若,則是平行四邊形。(4)若是平行四邊形,則。(5)若,則。(6)若,則。其中正確的是_(答:(4)(5)2、向量的表示方法:(1)幾何表示法:用帶箭頭的有向線段表示,如,注意起點(diǎn)在前,終點(diǎn)在后;(2)符號(hào)表示法:用一個(gè)小寫(xiě)的英文字母來(lái)表示,如,等;(3)坐標(biāo)表示法:在平面內(nèi)建立直角坐標(biāo)系,以與軸、軸方向相同的兩個(gè)單位向量,為基底,則平面內(nèi)的任一向量可表示為,稱(chēng)為向量的坐標(biāo),叫做向量的坐標(biāo)表示。如果向量的起點(diǎn)在原點(diǎn),那么向量的坐標(biāo)與向量的終點(diǎn)坐標(biāo)相同。提醒:向量的起點(diǎn)不在原點(diǎn),那么向量的坐標(biāo)與向量的終點(diǎn)坐標(biāo)就不相同. 如(04年上海卷.文6)已知點(diǎn)A(-1,5)和向量,若,則點(diǎn)B的坐標(biāo)為 . (5,4)3.平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)、,使a=e1e2,e1、e2稱(chēng)為一組基底.注:這為我們用向量解決問(wèn)題提供了一種方向:把參與的向量用一組基底表示出來(lái),使其關(guān)系容易溝通如(1)若,則_(答:);(2)下列向量組中,能作為平面內(nèi)所有向量基底的是 A. B. C. D. (答:B);(3)已知分別是的邊上的中線,且,則可用向量表示為_(kāi)(答:);(4)已知中,點(diǎn)在邊上,且,則的值是_(答:0)4、實(shí)數(shù)與向量的積:實(shí)數(shù)與向量的積是一個(gè)向量,記作,它的長(zhǎng)度和方向規(guī)定如下:當(dāng)0時(shí),的方向與的方向相同,當(dāng)0;當(dāng)與異向時(shí),0。|=|的大小由及的模確定。因此,當(dāng),確定時(shí),的符號(hào)與大小就確定了。這就是實(shí)數(shù)乘向量中的幾何意義。 (2) 若=(),b=(),則(3)如(1)若向量,當(dāng)_時(shí)與共線且方向相同(答:2);(2)已知,且,則x_(答:4);(3)設(shè),則k_時(shí),A,B,C共線(答:2或11)(04年上海卷.理6)已知點(diǎn),若向量與同向, =,則點(diǎn)B的坐標(biāo)為 .證明平行問(wèn)題通常是取得對(duì)應(yīng)的線段來(lái)構(gòu)造向量,然后證明向量平行9、向量垂直的充要條件: .特別地。如(1)已知,若,則 (答:);(2)以原點(diǎn)O和A(4,2)為兩個(gè)頂點(diǎn)作等腰直角三角形OAB,則點(diǎn)B的坐標(biāo)是_ (答:(1,3)或(3,1);(3)已知向量,且,則的坐標(biāo)是_ (答:)(2)向量平移具有坐標(biāo)不變性,可別忘了??!如(1)按向量把平移到,則按向量把點(diǎn)平移到點(diǎn)_(答:(,);(2)函數(shù)的圖象按向量平移后,所得函數(shù)的解析式是,則_(答:)證明垂直問(wèn)題通常是取得對(duì)應(yīng)的線段來(lái)構(gòu)造向量,然后證明向量垂直10.向量中一些常用的結(jié)論:(1)一個(gè)封閉圖形首尾連接而成的向量和為零向量,要注意運(yùn)用;(2),特別地,當(dāng)同向或有;當(dāng)反向或有;當(dāng)不共線(這些和實(shí)數(shù)比較類(lèi)似).(3)在中,若,則其重心的坐標(biāo)為。如若ABC的三邊的中點(diǎn)分別為(2,1)、(-3,4)、(-1,-1),則ABC的重心的坐標(biāo)為_(kāi)(答:);為的重心,特別地為的重心;為的垂心;向量所在直線過(guò)的內(nèi)心(是的角平分線所在直線);的內(nèi)心;(3)向量中三終點(diǎn)共線存在實(shí)數(shù)使得且.如平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn),若點(diǎn)滿足,其中且,則點(diǎn)的軌跡是_(答:直線AB)- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué)知識(shí)精要 14.平面向量教案 新人教A版 2019 2020 年高 數(shù)學(xué)知識(shí) 精要 14. 平面 向量 教案 新人
鏈接地址:http://m.appdesigncorp.com/p-2601279.html