2019-2020年高一數(shù)學(xué) 各章知識點總結(jié) 新人教A版必修1.doc
《2019-2020年高一數(shù)學(xué) 各章知識點總結(jié) 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高一數(shù)學(xué) 各章知識點總結(jié) 新人教A版必修1.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高一數(shù)學(xué) 各章知識點總結(jié) 新人教A版必修1 一、集合有關(guān)概念 1. 集合的含義 2. 集合的中元素的三個特性: (1) 元素的確定性如:世界上最高的山 (2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y} (3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合 3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。 u 注意:常用數(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 1) 列舉法:{a,b,c……} 2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR| x-3>2} ,{x| x-3>2} 3) 語言描述法:例:{不是直角三角形的三角形} 4) Venn圖: 4、集合的分類: (1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) 實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個集合是它本身的子集。AA ②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作AB(或BA) ③如果 AB, BC ,那么 AC ④ 如果AB 同時 BA 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n個元素的集合,含有2n個子集,2n-1個真子集 三、集合的運算 運算類型 交 集 并 集 補 集 定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}. 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}). 設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) S A 記作,即 CSA= 韋 恩 圖 示 S A 性 質(zhì) AA=A AΦ=Φ AB=BA ABA ABB AA=A AΦ=A AB=BA ABA ABB (CuA) (CuB) = Cu (AB) (CuA) (CuB) = Cu(AB) A (CuA)=U A (CuA)= Φ. 例題: 1.下列四組對象,能構(gòu)成集合的是 ( ) A某班所有高個子的學(xué)生 B著名的藝術(shù)家 C一切很大的書 D 倒數(shù)等于它自身的實數(shù) 2.集合{a,b,c }的真子集共有 個 3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是 . 4.設(shè)集合A=,B=,若AB,則的取值范圍是 5.50名學(xué)生做的物理、化學(xué)兩種實驗,已知物理實驗做得正確得有40人,化學(xué)實驗做得正確得有31人, 兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。 6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域. 注意: 1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。 求函數(shù)的定義域時列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零, (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義. u 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備) (見課本21頁相關(guān)例2) 2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法 3. 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 (3)區(qū)間的數(shù)軸表示. 5.映射 一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)” 對于映射f:A→B來說,則應(yīng)滿足: (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個; (3)不要求集合B中的每一個元素在集合A中都有原象。 6.分段函數(shù) (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。 (2)各部分的自變量的取值情況. (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復(fù)合函數(shù) 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。 二.函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高一數(shù)學(xué) 各章知識點總結(jié) 新人教A版必修1 2019 2020 年高 數(shù)學(xué) 各章 知識點 總結(jié) 新人 必修
鏈接地址:http://m.appdesigncorp.com/p-2554127.html