2019年高中數(shù)學(xué) 第二章 平面解析幾何初步 2.2.1 直線方程的概念與直線的斜率學(xué)業(yè)分層測(cè)評(píng) 新人教B版必修2.doc
《2019年高中數(shù)學(xué) 第二章 平面解析幾何初步 2.2.1 直線方程的概念與直線的斜率學(xué)業(yè)分層測(cè)評(píng) 新人教B版必修2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高中數(shù)學(xué) 第二章 平面解析幾何初步 2.2.1 直線方程的概念與直線的斜率學(xué)業(yè)分層測(cè)評(píng) 新人教B版必修2.doc(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019年高中數(shù)學(xué) 第二章 平面解析幾何初步 2.2.1 直線方程的概念與直線的斜率學(xué)業(yè)分層測(cè)評(píng) 新人教B版必修2 一、選擇題 1.下列說法正確的是( ) A.一條直線和x軸的正方向所成的正角,叫做這條直線的傾斜角 B.直線的傾斜角α的取值范圍是銳角或鈍角 C.與x軸平行的直線的傾斜角為180 D.每一條直線都存在傾斜角,但并非每一條直線都存在斜率 【解析】 選項(xiàng)A成立的前提條件為直線和x軸相交,故錯(cuò)誤;選項(xiàng)B中傾斜角α的范圍是0≤α<180,故錯(cuò)誤;選項(xiàng)C中與x軸平行的直線,它的傾斜角為0,故錯(cuò)誤;選項(xiàng)D中每一條直線都存在傾斜角,但是直線與y軸平行時(shí),該直線的傾斜角為90,斜率不存在,故正確. 【答案】 D 2.若A、B兩點(diǎn)的橫坐標(biāo)相等,則直線AB的傾斜角和斜率分別是( ) A.45,1 B.135,-1 C.90,不存在 D.180,不存在 【解析】 由于A、B兩點(diǎn)的橫坐標(biāo)相等,所以直線與x軸垂直,傾斜角為90,斜率不存在.故選C. 【答案】 C 3.若過兩點(diǎn)A(4,y),B(2,-3)的直線的傾斜角是135,則y等于( ) A.1 B.5 C.-1 D.-5 【解析】 由斜率公式可得:=tan 135, ∴=-1,∴y=-5.∴選D. 【答案】 D 4.若直線l的向上方向與y軸的正方向成60角,則l的傾斜角為( ) A.30 B.60 C.30或150 D.60或120 【解析】 直線l可能有兩種情形,如圖所示,故直線l的傾斜角為30或150.故選C. 【答案】 C 5.直線l過點(diǎn)A(1,2),且不過第四象限,則直線l的斜率k的最大值是( ) A.0 B.1 C. D.2 【答案】 D 二、填空題 6.a,b,c是兩兩不等的實(shí)數(shù),則經(jīng)過P(b,b+c),C(a,c+a)兩點(diǎn)直線的傾斜角為________. 【解析】 由題意知,b≠a, 所以k==1, 故傾斜角為45. 【答案】 45 7.已知三點(diǎn)A(-3,-1),B(0,2),C(m,4)在同一直線上,則實(shí)數(shù)m的值為________. 【解析】 ∵A、B、C三點(diǎn)在同一直線上, ∴kAB=kBC, ∴=, ∴m=2. 【答案】 2 8.在平面直角坐標(biāo)系中,正△ABC的邊BC所在直線的斜率是0,則AC,AB所在直線的斜率之和為________. 【解析】 如圖,易知kAB=,kAC=-,則kAB+kAC=0. 【答案】 0 三、解答題 9.已知點(diǎn)A(1,2),在坐標(biāo)軸上求一點(diǎn)P使直線PA的傾斜角為60. 【解】 (1)當(dāng)點(diǎn)P在x軸上時(shí),設(shè)點(diǎn)P(a,0), ∵A(1,2),∴kPA==. 又∵直線PA的傾斜角為60, ∴tan 60=,解得a=1-. ∴點(diǎn)P的坐標(biāo)為. (2)當(dāng)點(diǎn)P在y軸上時(shí),設(shè)點(diǎn)P(0,b). 同理可得b=2-, ∴點(diǎn)P的坐標(biāo)為(0,2-). 10.已知A(2,4),B(3,3),點(diǎn)P(a,b)是線段AB(包括端點(diǎn))上的動(dòng)點(diǎn),求的取值范圍. 【解析】 設(shè)k=,則k可以看成點(diǎn)P(a,b)與定點(diǎn)Q(1,1)連線的斜率.如圖,當(dāng)P在線段AB上由B點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),PQ的斜率由kBQ增大到kAQ, 因?yàn)閗BQ==1,kAQ==3, 所以1≤k≤3,即的取值范圍是[1,3]. [能力提升] 1.斜率為2的直線經(jīng)過點(diǎn)A(3,5),B(a,7),C(-1,b)三點(diǎn),則a,b的值分別為( ) A.4,0 B.-4,-3 C.4,-3 D.-4,3 【解析】 由題意,得即 解得a=4,b=-3. 【答案】 C 2.已知直線l1的斜率為1,l2的斜率為a,其中a為實(shí)數(shù),當(dāng)兩直線的夾角在(0,15)內(nèi)變動(dòng)時(shí),則a的取值范圍是( ) A.(0,1) B. C.∪(1,) D.(1,) 【解析】 ∵l1的傾斜角為45,∴l(xiāng)2的傾斜角的取值范圍為(30,45)∪(45,60),∴a的取值范圍為∪(1,),故選C. 【答案】 C 3.已知直線l1的傾斜角α1=15,直線l1與l2的交點(diǎn)為A,把直線l2繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到和直線l1重合時(shí)所轉(zhuǎn)的最小正角為60,則直線l2的斜率的值為________. 【解析】 設(shè)直線l2的傾斜角為α2,則由題意知: 180-α2+15=60, α2=135, k2=tan α2=-tan 45=-1. 【答案】 -1 4.點(diǎn)M(x,y)在函數(shù)y=-2x+8的圖象上,當(dāng)x∈[2,5]時(shí),求的取值范圍. 【解】?。降膸缀我饬x是過M(x,y),N(-1,-1)兩點(diǎn)的直線的斜率. ∵點(diǎn)M在函數(shù)y=-2x+8的圖象上,且x∈[2,5], ∴設(shè)該線段為AB且A(2,4),B(5,-2), 設(shè)直線NA,NB的斜率分別為kNA,kNB. ∵kNA=,kNB=-,∴-≤≤. ∴的取值范圍是.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高中數(shù)學(xué) 第二章 平面解析幾何初步 2.2.1 直線方程的概念與直線的斜率學(xué)業(yè)分層測(cè)評(píng) 新人教B版必修2 2019 年高 數(shù)學(xué) 第二 平面 解析幾何 初步 2.2 直線 方程 概念 斜率 學(xué)業(yè)
鏈接地址:http://m.appdesigncorp.com/p-2515012.html