立式精鍛機自動上料機械手設(shè)計含9張CAD圖
立式精鍛機自動上料機械手設(shè)計含9張CAD圖,立式,精鍛機,自動,機械手,設(shè)計,cad
附錄一 外文譯文
機械手生產(chǎn)設(shè)計的進化和發(fā)展
摘要
信息物理系統(tǒng)的出現(xiàn)已經(jīng)在機器人協(xié)作制造的背景下提高了利用率。完成這樣要求的一種方法是通過制造更便宜的,更加容易制造的機器人,它們能夠通過中小企業(yè)進行制造。為了解決這個問題,本實驗利用了快速原型機制造技術(shù)開發(fā)能夠通過信息物理生產(chǎn)系統(tǒng)開發(fā)的可定制機器人操作器。因此,本研究有助于設(shè)計連接型和快速原型機器人。這種方法同時考慮了實現(xiàn)機器人機械手所需的軟件和硬件的發(fā)展。此外,生成設(shè)計,一種被用來進化和人工智能為基礎(chǔ)的方法,用于設(shè)計機器人關(guān)節(jié)之間的鏈接模塊。該組件已被定義為理想的設(shè)計并且通過此方法,它可以有利于與快速原型耦合的生成設(shè)計方法的大部分。本文還探討了基于因特網(wǎng)控制技術(shù)的機器人機械手的控制結(jié)構(gòu)在信息物理系統(tǒng)中的貫徹。
1.介紹
1.1信息物理系統(tǒng)
CPPS由自主合作系統(tǒng)(例如智能機器)和子系統(tǒng)(例如智能工廠)組成。它們依靠著情境而來互相聯(lián)系。在所有生產(chǎn)層次上,從過程級到工廠級和生產(chǎn)級。
實施CPPS的主要驅(qū)動因素之一是生產(chǎn)系統(tǒng)的連續(xù)適應(yīng)性和進化的需要,不斷變化的生產(chǎn)系統(tǒng)需求可以追溯其起源于易變的客戶行為和不斷發(fā)展的產(chǎn)品。
需要適應(yīng)顧客的需要也就暗示著生產(chǎn)系統(tǒng)需要利用有高效率的生產(chǎn)系統(tǒng)同時也適應(yīng)制造環(huán)境的需要。由于機器人提供高效率和精確性,同時不犧牲靈活性,信息物理生產(chǎn)系統(tǒng)的出現(xiàn)帶來了機器人的增加利用。也就是說,隨著協(xié)作和連接機器人的出現(xiàn),機器人的發(fā)展趨勢正在發(fā)生變化。這一趨勢在達沃斯世界經(jīng)濟論壇上也得到了強調(diào),它將先進的機器人識別為工業(yè)4.0背后的主要技術(shù)驅(qū)動力之一。
1.2合作和可聯(lián)系的機器人技術(shù)
這就是說,這并不意味著人類將完全從車間中移除。事實上,在詳細的研究和實驗的基礎(chǔ)上,菲佛認為,在將來的車間內(nèi),人類的經(jīng)驗將仍然是需要的。由此可見,人類和機器人在制造業(yè)合作的需求將在未來幾年內(nèi)增加。為了證實這一說法,布魯斯對機器人公司的關(guān)鍵管理者進行了討論,并基于這種CIN對這種日益增長的需求的反應(yīng),實際上可以看出所有主要機器人制造商是如何引入他們的陣容的。
為了在CPPS中貫徹實施,這些機器人需要容易地連接到控制制造操作的控制系統(tǒng)。CPPS的核心是分散或局部控制。這種本地化的CPPS是通過使用具有嵌入式處理和聯(lián)網(wǎng)能力的機器來實現(xiàn)的。這些能力擁有著分布式認知控制的第三個特性。這種分布式控制越來越受歡迎,具有使用認知處理來分析從機器傳感器收集的數(shù)據(jù)的能力,這允許對CPPS控制的分散。
持續(xù)適應(yīng)的需求也推動了實施插裝生產(chǎn)概念方法的發(fā)展。插裝生產(chǎn)允許根據(jù)生產(chǎn)需要從生產(chǎn)系統(tǒng)中添加和移除生產(chǎn)系統(tǒng)的不同元件。
這種插頭和生產(chǎn)的概念也允許模塊化生產(chǎn)系統(tǒng)的開發(fā)。正如幾位作者所解釋的,Schleipen等人、OnRi和MaEDA。插裝的概念不僅必須支持機械功能,而且還需要開發(fā)新的和改進的軟件和控制范例。
1.3機器人的民主化
大公司有專門的開發(fā)團隊,也有實現(xiàn)這些技術(shù)的投資潛力。據(jù)國際機器人聯(lián)盟(International Federation for Robotics)報道,2015年全球機器人銷量增長了15%,達到253,748臺,創(chuàng)造了一年以來的最高水平。
這些先進的制造技術(shù)同樣也不能被說成中小企業(yè),盡管中小企業(yè)比大公司占了最大的比例。因此,如果正如Sommer所描述的那樣,中小企業(yè)并不是工業(yè)4.0的第一個受害者,那么就有必要使機器人技術(shù)的使用民主化。
技術(shù)的民主化是指更多的人快速獲得技術(shù)的過程。滿足這一需求的一種方法是通過開發(fā)更廉價和更可定制的機器人來促進機器人的實現(xiàn),這些機器人可以很容易地由中小型企業(yè)實現(xiàn)。
由于中小型企業(yè)對工業(yè)4.0技術(shù)的投資意愿較低,提供更便宜的機器人可能會增加機器人的使用。此外,使機器人易于連接和訓(xùn)練也可以解決中小型企業(yè)對機器人使用和實現(xiàn)的任何保留。這些方法同時提供了一個機器人平臺的可能性,可以為中小企業(yè)廣泛變化的需求定制,也會增加機器人技術(shù)和工業(yè)4.0技術(shù)。
1.4實驗?zāi)繕?
為了應(yīng)對這些挑戰(zhàn),本研究旨在利用快速原型技術(shù)開發(fā)可定制的機器人操作器,這些技術(shù)可以在信息物理生產(chǎn)系統(tǒng)中實現(xiàn)。為了盡量減少機械手的重量和成本,這種方法利用了一種生成設(shè)計技術(shù)來設(shè)計機器人關(guān)節(jié)之間的連接。生成設(shè)計是一種進化和人工智能方法,并在第2節(jié)中進一步討論。其他處理類似的方法也在第3節(jié)中提出。第4節(jié)描述了用于開發(fā)機器人機械手的方法。第5節(jié)給出原型設(shè)計和實現(xiàn)。本研究的結(jié)論和未來工作將在第6節(jié)提出。
2 生成設(shè)計
生成設(shè)計并不是一個新概念,它有時被稱為進化設(shè)計,它指的是在這個計算過程中使用的搜索技術(shù)和進化算法。在參考文獻[11]中,本特利和韋克菲爾德描述了一個原型設(shè)計系統(tǒng),該系統(tǒng)使用一種遺傳算法從零起點進化出新的概念設(shè)計。在這種方法中,原型系統(tǒng)創(chuàng)建了新的設(shè)計,并使用遺傳算法對這些設(shè)計進行迭代優(yōu)化。遺傳算法利用了這些原理。在自然中發(fā)現(xiàn)的進化首先產(chǎn)生一個解決方案,然后“復(fù)制”最適合的解決方案。通過隨機交叉和變異操作將這些適合父母的基因型組合起來,生成后代。賓利和韋克菲爾德的設(shè)計系統(tǒng)由三個要素組成:
在設(shè)計過程中,適當(dāng)?shù)乇硎緦嶓w對象,使計算機能夠有效地操縱候選設(shè)計。
xA改進的遺傳算法從零進化出這樣的代表設(shè)計。
xEvaluation軟件指導(dǎo)演進過程。
正如參考文獻[12]所解釋的,概念設(shè)計過程可以作為一個優(yōu)化過程提出。為了達到一個解決方案并確定一組規(guī)則,以評估針對特定設(shè)計問題的解決方案的適用性。這些方法充分利用了進化計算的創(chuàng)造性,以便發(fā)現(xiàn)可能沒有被人類設(shè)計者發(fā)現(xiàn)的解決方案。因此,這種設(shè)計技術(shù)可以用來提高設(shè)計開發(fā)對人類設(shè)計師的支持,同時在設(shè)計過程的中心保持設(shè)計師。Krish在其生成設(shè)計過程中也描述了這種協(xié)同開發(fā)方法。Krish解釋了設(shè)計師如何明確定義約束信封,其中定義了解決方案的幾何可行性。正如Sun等人所解釋的,使用這種進化技術(shù)進行設(shè)計自動化不僅可以提高設(shè)計的功能,而且還可以減少開發(fā)時間,降低成本,特別是在設(shè)計復(fù)雜組件時。
3 當(dāng)前發(fā)展?fàn)顩r
在本節(jié)中,作者展示了與本研究主題相關(guān)的藝術(shù)狀態(tài)。使用生成設(shè)計。生成設(shè)計的一個應(yīng)用在一個具有相對復(fù)雜特征的典型微球端銑刀的設(shè)計中得到了解釋。通過生成設(shè)計方法對該產(chǎn)品進行分析,生成所需運動軸的數(shù)量和性質(zhì)。本研究在設(shè)計一種新型五軸激光機的過程中進行了分析。
另一個應(yīng)用是Lee的一個進化系統(tǒng)用于自動機器人設(shè)計。這項工作探索了不同的設(shè)計問題,從機器人的簡單行為控制器,到復(fù)雜的行為控制器,最后是完成一個完整的機器人系統(tǒng),包括控制器和物理結(jié)構(gòu)。
生成設(shè)計的一個有趣的應(yīng)用是Saravanan等人在機器人夾子的設(shè)計中獲得了最優(yōu)的幾何尺寸。基于他們實驗的成功,本研究的作者得出結(jié)論,這項工作為進一步研究如何利用智能技術(shù)解決復(fù)雜的工程優(yōu)化問題打開了方便之門。
生成設(shè)計也被用來優(yōu)化3D打印應(yīng)用。其中一種方法是asadio - eydivand等在骨組織工程中使用3D打印支架。本研究成功地利用進化算法探索不同的3D打印參數(shù)。
正如Onal等人所解釋的那樣,打印機器人的能力為現(xiàn)代的、真實的機器人應(yīng)用程序引入了一種快速且低成本的制造方法。采用3D打印技術(shù)開發(fā)基于折紙結(jié)構(gòu)的機器人。雖然這些機器人目前還沒有合適的工業(yè)應(yīng)用,但它們展示了3D打印技術(shù)的實用性,以成本效益的方式打印復(fù)雜結(jié)構(gòu),同時為新的創(chuàng)新設(shè)計打開了大門。
Bulgarelli等也采用了類似的方法,開發(fā)了一種低成本、開源的3D打印技術(shù)的機器人手。本研究采用的一種有趣的方法是,開發(fā)的硬件和軟件都是在線提供的,以促進社區(qū)的進一步改進。開源社區(qū)為了促進機器人的民主化。Armesto等實際上認為,3D打印技術(shù)的廣泛應(yīng)用使機器人社區(qū)有機會接觸到更廣泛的公眾。本研究實際上提出了一種用于工程教育的低成本可打印機器人的設(shè)計。
在文獻綜述中,作者可以得出結(jié)論,沒有辦法將3D打印的機器人與在CPPS中使用的生成設(shè)計方法結(jié)合起來。如第1節(jié)所述,這種方法將降低實現(xiàn)成本,從而維持機器人的民主化,從而支持中小型企業(yè)執(zhí)行CPPS。
4 支撐著生成設(shè)計的過程
為了保證CPPS的即插即用概念,需要使用一種方法來考慮信息網(wǎng)絡(luò)透視圖。因此,為了開發(fā)這樣的系統(tǒng),需要采用一種方法。本文對幾種設(shè)計方法進行了綜述。雖然它們都突出了CPPS的多個透視圖,但這些都沒有說明從需求到最終設(shè)計的設(shè)計過程。這種缺乏CPPS的設(shè)計方法也得到了Fisher等人的強調(diào)。
因此,設(shè)計了基本的設(shè)計周期[26]。該設(shè)計過程如圖1所示,因此在本研究中使用,以開發(fā)網(wǎng)絡(luò)連接的機器人機械手。
CPPS設(shè)備的這個設(shè)計過程描述了從目標(需求)到方法(經(jīng)過批準的設(shè)計)的設(shè)計周期。在這一設(shè)計過程中,設(shè)計者可以利用人工智能的生成設(shè)計技術(shù)來自動化設(shè)計合成、模擬和評估活動。也就是說,這并不能消除設(shè)計過程中的設(shè)計師。本研究提供的設(shè)計過程是一個人在循環(huán)系統(tǒng)。因此,雖然設(shè)計過程的一些活動可能是自動化的,但最終決定批準設(shè)計的還是設(shè)計師。
圖1 一個CPPS設(shè)備的生成設(shè)計周期
此外,設(shè)計周期說明了在CPPS的合成設(shè)計過程中,物理和網(wǎng)絡(luò)組件是如何被考慮的。此外,為了滿足系統(tǒng)的要求,CPPS設(shè)備還必須使用可實現(xiàn)技術(shù),如可配置性、模塊化、可診斷性和可連接性。
5 原型的設(shè)計和實現(xiàn)
5.1物理組件的設(shè)計
物理組件設(shè)計過程導(dǎo)致機器人機械手的物理接口。物理系統(tǒng)設(shè)計利用一組機器人關(guān)節(jié)模塊,其中一些模塊由一個鏈路模塊連接。機器人機械手一旦產(chǎn)生和裝配,本質(zhì)上就是一個鉸接機器人,如圖2所示。機械手是在關(guān)節(jié)模塊中使用步進電機驅(qū)動的。
5.1.1可構(gòu)成設(shè)計
為了滿足不同工業(yè)應(yīng)用的定制要求,通過選擇、添加和移除關(guān)節(jié)和鏈路模塊來配置物理機器人機械手設(shè)計。機器人機械手的主要結(jié)構(gòu)如圖2所示,其自由度為6。這意味著機械手是由六個關(guān)節(jié)組成的,每個關(guān)節(jié)都是一個轉(zhuǎn)動關(guān)節(jié)。六自由度確保末端執(zhí)行器能夠到達機械手工作空間內(nèi)的任何位置和方向。采用不同的步進電機尺寸和齒輪比,以最大限度地提升1.5公斤的負荷。
5.1.2 3d打印設(shè)計
由于機器人的機械手主要是快速原型,在原型制作過程中需要考慮幾個因素和限制因素。融合沉積模型(FDM)和立體成像(SLA)作為快速成型的過程。這個過程是根據(jù)每個部分的幾何形狀來選擇的。其中一個側(cè)面有重要幾何形狀的部件是使用SLA的3D打印的,例如特別設(shè)計的齒輪。把重要的幾何形狀與支撐材料放在一起,對保持幾何形狀是很重要的。
圖2 機械手的裝配模型
另一方面,在一個側(cè)面有一個平面的部分是用FDM印刷的,那一面被放在了印刷床上。當(dāng)3D打印部件在內(nèi)部和不可到達的部分需要支撐材料時,也鼓勵使用FDM。在這些情況下使用可溶性支架,使支架材料在后處理過程中易于移動。
在設(shè)計3D打印時,考慮的一個重要因素是重量的最小化。在使用CAD建模的同時,設(shè)計了幾個部件,以使壁厚達到最小。這第一步導(dǎo)致了尋找其他可能的減肥方法。這包括減少連接模塊的直徑,導(dǎo)致所有內(nèi)部部件也變得更小,因而更輕。
5.2生成設(shè)計
另一種減輕重量的方法是在不必要的大體積的零件上制造出洞。因此,如第1.4節(jié)所述,連接機器人關(guān)節(jié)的鏈接模塊是選擇性的,作為演示生成設(shè)計使用的理想案例研究。在Autodesk發(fā)明人CAD系統(tǒng)中使用形狀生成器函數(shù)實現(xiàn)了生成設(shè)計練習(xí)。
5.2.1構(gòu)建容量和設(shè)計約束
第一步是創(chuàng)建部件模型的構(gòu)建卷或近似。一個圓柱形的形狀被用作鏈接模塊的原始構(gòu)建卷。在定義了構(gòu)建卷之后,下一步是定義隔離區(qū)域。生成設(shè)計過程在創(chuàng)建引導(dǎo)形狀時不會修改這些區(qū)域。最后給出了應(yīng)用于該零件的約束和力。然后在自動模擬臨時設(shè)計解決方案時使用這些標準,以評估每個解決方案滿足設(shè)計需求的能力?;跈C器人機械手的設(shè)計,本案例研究使用的標準是在中軸線上可以承受的力。
圖3所示的模型說明了應(yīng)用于鏈路模塊的初始構(gòu)建量和設(shè)計約束。需要注意的是,這個物理組件的設(shè)計是為了通過電力驅(qū)動的線路而需要的隔離區(qū)域。
5.2.2形狀的生成
根據(jù)指定的設(shè)計標準,在Autodesk Inventor中運行了一個形狀生成器研究。該算法生成的網(wǎng)格如圖4所示。
圖3 生成設(shè)計約束
圖4 由生成設(shè)計過程產(chǎn)生的網(wǎng)格
網(wǎng)格可以作為設(shè)計者的指導(dǎo)。
通過剪切、擠壓和其他特性編輯來修改構(gòu)建卷模型。設(shè)計師的編輯改變了。
從近似到組件設(shè)計的生成設(shè)計。
5.2.3結(jié)果
生成設(shè)計練習(xí)的結(jié)果如圖5所示。這種設(shè)計保持了相同的結(jié)構(gòu)完整性,但在重量和建造時間上都大大減少了,因此也降低了機器人操縱器的整體成本。
5.3 網(wǎng)絡(luò)組件設(shè)計
5.3.1要求
該設(shè)備控制系統(tǒng)的設(shè)計目標是鼓勵與其他系統(tǒng)的集成,并鼓勵系統(tǒng)集成商進一步開發(fā)。集成必須以簡單和快速的方式在硬件和軟件領(lǐng)域進行。系統(tǒng)必須基于標準化或開源軟件控制和開發(fā)工具。為了維護一個民主的設(shè)計,控制硬件必須基于商業(yè)上的貨架部件(COTS),從而實現(xiàn)低成本的解決方案。
圖5 生成設(shè)計的訓(xùn)練結(jié)果
5.3.2工業(yè)因特網(wǎng)
基于因特網(wǎng)硬件的工業(yè)網(wǎng)絡(luò)作為控制系統(tǒng)的骨干。有多個相關(guān)的工業(yè)因特網(wǎng)協(xié)議,為這個解決方案選擇的是EtherCAT。
EtherCAT是一個基于標準因特網(wǎng)物理層(Ethernet PHY)的工業(yè)網(wǎng)絡(luò)。網(wǎng)絡(luò)是確定性的,可以在實時環(huán)境中使用。它支持比其他工業(yè)網(wǎng)絡(luò)更短的周期,這使得它適合運動控制應(yīng)用。除了適當(dāng)?shù)男阅?,EtherCAT還提供了其他因素,使它適合用于機器人技術(shù)民主化的系統(tǒng)。
當(dāng)網(wǎng)絡(luò)建立在因特網(wǎng)的基礎(chǔ)上時,他們通常需要一個托管的網(wǎng)絡(luò)交換機,每一個EtherCAT設(shè)備都有兩個因特網(wǎng)PHYs,通過一個daisy鏈配置來連接它們,如果一個環(huán)形網(wǎng)絡(luò)拓撲足夠的話,就可以消除對網(wǎng)絡(luò)交換機的需求。此外,EtherCAT的從屬設(shè)備負責(zé)控制網(wǎng)絡(luò)的時間,而不需要專門的主網(wǎng)絡(luò)控制器。因此,EtherCAT網(wǎng)絡(luò)中的主設(shè)備可以使用通用COTS Ethernet網(wǎng)絡(luò)接口卡(NIC),從而降低實現(xiàn)以太網(wǎng)絡(luò)的成本。使用標準的NIC可以通過使用任何具有基本以太網(wǎng)功能的設(shè)備來實現(xiàn)EtherCAT主機,這包括使用一個樹莓Pi,開發(fā)人員認為合適。EtherCAT是一種開源技術(shù),它鼓勵開發(fā)硬件和軟件來使用這種技術(shù)。
5.3.3 機器人控制
如圖6所示,機器人控制器基于ATMega2560,通過Arduino/Genuino開發(fā)平臺開發(fā)。除了與Arduino開發(fā)解決方案所需的低成本之外,龐大的用戶群對各種項目做出貢獻,縮短和簡化了微控制器開發(fā)周期。
如圖6所示,單片機通過微芯片的LAN9252接口連接到EtherCAT網(wǎng)絡(luò)。
使用SPI通信的從設(shè)備的EtherCAT控制器?;贚AN9252的Arduino平臺的COTS附加組件(shield)是由AB&T Srl生產(chǎn)的。機器人控制器從它的EtherCAT主機接收聯(lián)合位置數(shù)據(jù),然后從聯(lián)合位置轉(zhuǎn)換到所需的脈沖來驅(qū)動步進電機。
圖6 機械手的控制
6 結(jié)論
因此,該研究為設(shè)計連接的快速原型機械機器人提供了一種方法。這種方法考慮了實現(xiàn)機器人操作器所需的軟件和硬件開發(fā)。此外,這種方法演示了生成設(shè)計,一種進化和人工智能方法,來設(shè)計機器人關(guān)節(jié)之間的連接。
該鏈接模塊被認為是利用生成設(shè)計的優(yōu)點和快速原型設(shè)計的理想組件。本文還探討了一種基于以太網(wǎng)控制技術(shù)的機器人機械手控制結(jié)構(gòu),用于網(wǎng)絡(luò)物理生產(chǎn)系統(tǒng)的實現(xiàn)。未來的工作將包括對機器人機械手的測試,以確定系統(tǒng)的準確性和重復(fù)性,并確定進一步改進的領(lǐng)域。
附錄二 外文原文
立式精鍛機自動上料機械手三維設(shè)計
摘 要
工業(yè)機械手在目前的工業(yè)趨勢下,勢必會變得越來越受重用。它既擁有著傳統(tǒng)機械的作用,也可以通過系統(tǒng)的指令來完成規(guī)定的動作。由于工業(yè)機械手與人不同,它不需要休息,在適當(dāng)?shù)木S護保養(yǎng)下可以長時間的工作,十分高效,在工業(yè)過程中展現(xiàn)出強大的生命力。機械手技術(shù)包含了軟件技術(shù),機械工程,人工智能等多個領(lǐng)域的技術(shù)。其應(yīng)用狀況,是一個國家工業(yè)自動化的標志。隨著當(dāng)下工業(yè)自動化的發(fā)展與需求,由此可見,機械手將在工業(yè)中扮演著更加重要的角色。
為了解決抓取圓形坯料并將其運輸?shù)搅⑹骄憴C上,設(shè)計了立式精鍛機自動上料機械手。本文首先簡單介紹了機械手的理論意義以及應(yīng)用價值,表述了機械手的4個自由度和整體坐標形式。在給定了關(guān)鍵參數(shù)后,然后再對機械手的整體各結(jié)構(gòu)和機械手結(jié)構(gòu)內(nèi)的部分重要零件進行詳細的分析和選取,并進行一定的載荷的校核。其中選取了圓柱坐標作為其坐標形式,手爪部分選用了雙支點回轉(zhuǎn)結(jié)構(gòu)作為夾緊部分;手腕部分采取了回轉(zhuǎn)油缸,以液壓驅(qū)動的方式進行驅(qū)動;手臂部分采取了相同的液壓缸結(jié)構(gòu)。并對液壓系統(tǒng)進行了一定的分析。
其次,在選取完大致的結(jié)構(gòu)之后,本文也詳細介紹了機械手的設(shè)計理論和計算方法。詳盡的討論了機械手手爪部、機械手手腕部、機械手手臂升降、伸縮、回轉(zhuǎn)機構(gòu)的相關(guān)計算來確保機械手能夠可靠的抓取坯料。
最后,通過Solidworks對機械手整體進行三維建模。
關(guān)鍵詞:機械手,液壓傳動,Solidworks三維建模,立式精鍛機
ABSTRACT
Industrial robots will become more and more popular in the current industrial trend. It not only has the function of traditional machinery, but also can complete the prescribed actions through systematic instructions. Because industrial manipulator is different from people, it does not need rest. It can work for a long time with the proper maintenance. It is very efficient and shows great vitality in the process of industry. Manipulator technology includes software technology, mechanical engineering, artificial intelligence and other fields of technology. Its application status is the symbol of a country's industrial automation. With the development and demand of industrial automation, manipulator will act a more important role in industry.
In order to solve the grabing round billet and transport it to the vertical precision forging machine.The vertical precision forging machine with automatic feeding manipulator is designed. This paper firstly introduces the theoretical significance and application value of manipulator, and describes the four degrees of freedom and overall coordinate form of manipulator. After the key parameters are given, the whole structure of the manipulator and some important parts in the structure of the manipulator are analyzed and selected in detail, and a certain load check is carried out. The cylindrical coordinate is selected as its coordinate form, and the double pivot structure is used as the clamping part. The wrist part adopts the rotary oil cylinder, which is driven by the hydraulic drive; The arm part adopts the same hydraulic cylinder structure. And the hydraulic system is analyzed.
Secondly, after selecting the general structure, the design theory and calculation method of manipulator are introduced in detail. This paper discusses the calculation of manipulator arm, wrist, arm lifting, stretching and rotating mechanism to ensure the reliable grasping of the blank.
Finally, three-dimensional modeling of the manipulator is carried out through Solidworks.
Key words:Machine Manipulator,Hydraulic transmission, Solidworks 3D modeling,Vertical precision forging machine
目錄
摘 要 I
ABSTRACT II
1 緒論 1
2 機械手方案的選擇 3
2.1 機械手坐標形式的確定 3
2.2 機械手的主要部件及運動 3
2.3 驅(qū)動機構(gòu)的選擇 4
2.4 機械手參數(shù)的確定 4
2.5 本章小結(jié) 4
3 機械手手部方案的確定與設(shè)計 5
3.1 手部結(jié)構(gòu)分類 5
3.2 夾鉗式手部設(shè)計的要求 5
3.3 機械手手部的設(shè)計 6
3.3.1 手部夾緊裝置 6
3.3.2 手爪的力學(xué)分析 6
3.3.3 夾緊力及驅(qū)動力的計算 7
3.4 夾緊缸尺寸計算 9
3.5 螺栓尺寸的選定 10
3.5.1 手指部螺栓的分析與計算 10
3.5.2 手架部分螺栓的分析與計算 11
3.6 手部拉緊軸的分析 11
3.6.1 軸的載荷分析和計算 11
3.6.2軸的材料的選擇 12
3.7 銷連接的設(shè)計 12
3.8 本章小結(jié) 12
4 機械手手腕結(jié)構(gòu)設(shè)計 13
4.1 腕部設(shè)計所需滿足的要求 13
4.2 腕部結(jié)構(gòu)的選擇 13
4.3 腕部的設(shè)計計算 13
4.3.1 腕部參數(shù)的設(shè)定 14
4.3.2 腕部驅(qū)動條件的確定 14
4.4 腕部零件的設(shè)計 16
4.4.1 腕部軸承的設(shè)計 16
4.4.2腕部鍵的設(shè)計 16
4.5 本章小結(jié) 17
5 機械手手臂方案的確定與設(shè)計 18
5.1 滿足手臂運動的要求 18
5.2 機構(gòu)的選擇 18
5.3 手臂的設(shè)計計算 18
5.3.1 系統(tǒng)摩擦力的計算 19
5.3.2 手臂密封裝置阻力的分析與計算 19
5.3.3 慣性力的計算 19
5.4 液壓缸壓力和結(jié)構(gòu)的分析 20
5.5 手臂部分螺栓的設(shè)計 21
5.6 手臂部分的裝配以及技術(shù)要求 21
5.7 本章小結(jié) 21
6 機械手機身結(jié)構(gòu)設(shè)計 22
6.1 機身整體構(gòu)思 22
6.2 機身回轉(zhuǎn)機構(gòu)的分析與計算 22
6.2.1 液壓缸驅(qū)動力矩的計算 22
6.2.2 回轉(zhuǎn)缸尺寸的選定 24
6.3 機身升降機構(gòu)的計算 24
6.3.1 手臂偏重力矩的計算 24
6.3.2 手臂升降不自鎖條件分析計算 25
6.3.3 手臂升降時驅(qū)動力的計算 25
6.3.4 液壓缸尺寸的初步確定 26
6.4 回轉(zhuǎn)液壓缸結(jié)構(gòu)確定 27
6.4.1 定位桿的受力分析 27
6.4.2 定位缸的設(shè)計計算 27
6.5 齒輪的計算 28
6.6 連接件的設(shè)計 29
6.6.1 回轉(zhuǎn)定位油缸鍵的選取 29
6.6.2 回轉(zhuǎn)定位油缸銷的選取 29
6.7 本章小結(jié) 29
7 機械手零部件三維建模 30
7.1 SolidWorks軟件的背景及特點 30
7.2 機械手的三維建模 30
7.3 本章小結(jié) 32
8 經(jīng)濟性與環(huán)保性分析 33
8.1盡量使用環(huán)保無污染材料 33
8.2系統(tǒng)高效節(jié)能設(shè)計 33
8.3本章小結(jié) 33
9 液壓系統(tǒng) 34
10結(jié)論與展望 36
參考文獻 37
附錄一 外文譯文 38
附錄二 外文原文 48
致謝 54
VII
1 緒論
1.1前言
機械手能夠大致實現(xiàn)與人類手臂相似的動作,它可以在空間內(nèi)進行物體的抓放,移動,回轉(zhuǎn)等功能,同時也可以進行其它操作的機械部件。機械手可以仿真人手的部分動作,根據(jù)已輸入的語言或程序,來實現(xiàn)完全自動化的動作,如回轉(zhuǎn),升降,移動,抓取工件等。在工業(yè)中被廣泛所應(yīng)用的機械手稱為工業(yè)機械手。它能夠更有效地完成較多的復(fù)雜高強度的人類無法完全勝任的工作。因此,機械手被廣泛地應(yīng)用于機械制造、冶金、電子、輕工和原子能等部門[1]。近年來,隨著工業(yè)4.0的提出以及我國經(jīng)濟的發(fā)展,中國工業(yè)轉(zhuǎn)型在中國轉(zhuǎn)變經(jīng)濟增長模式的過程中扮演著重要角色,所以國家的工業(yè)也需要通過飛速的發(fā)展與完善。機械手作為機械生產(chǎn)中及其重要的一種工具,對其技術(shù)的不斷突破以及更新也變得越來越重要。[2]隨著現(xiàn)代工業(yè)發(fā)展的需求,機械手在機械制造、冶金等部門中十分重要,特別是在高溫度、高壓力、易燃易爆以及放射性等惡劣不利人類工作的環(huán)境中來代替人類無法完全勝任的工作。因此機械手在如今的時代下?lián)碛惺謴V泛的空間以及極為有利的前景。
1.2工業(yè)機械手的發(fā)展動態(tài)和趨勢
目前工業(yè)機械手在國內(nèi)主要是發(fā)展鑄造、熱處理工藝的工業(yè)機械手,來改善工作強度以及條件;而在國外的機械工業(yè)中,工業(yè)機械手被廣泛的使用。例如進行點焊作業(yè)的點焊機械手,進行噴涂作用的噴漆機器人等。與我國機械手的不同之處在于,國外的機械手的發(fā)展趨勢是大力研制具有智能反饋系統(tǒng)的智能機械手,使它們能夠具有一定的傳感能力[3],并根據(jù)外界條件的變化進行反饋作用,同時作相應(yīng)的變更,使得機械手能夠進行更加精確的反饋動作,并根據(jù)反饋進行適當(dāng)?shù)南乱徊降南鄳?yīng)動作。
根據(jù)目前工業(yè)機械手的發(fā)展趨勢,人類也要對發(fā)展中的工業(yè)機械手的應(yīng)用與發(fā)展提出以下五點更高的要求:
一、重復(fù)高精度。由于時代的發(fā)展,以后機械手會使用的越來越普遍,也會越來越廣泛。因此,對機械手的精度就提出了一定的要求,需要在多次使用時保證定位的精確性[4]。
二、機械手的模塊化。模塊化的機械手相比于一般的導(dǎo)向驅(qū)動機械手更加容易操作,也更加靈活。根據(jù)模塊的不同可以使得已經(jīng)模塊化的機械手由于它們所擁有的模塊功能不同,便會使機械手擁有不同的多樣的功能。這就令機械手的應(yīng)用范圍增大了很多,提高了機械手的多樣性[4]。
三、無給油化。無給油化是新提出的一個環(huán)保概念,這是為了達成食品、醫(yī)藥、生物工程等特殊行業(yè)的無污染要求。隨著現(xiàn)代材料科學(xué)的發(fā)展,新型環(huán)保無潤滑材料的出現(xiàn),構(gòu)造特殊,不僅節(jié)省潤滑油脂且不污染環(huán)境,系統(tǒng)簡便、性能穩(wěn)定、成本較低、壽命可靠[4]。
四、機電一體化。機電一體化的核心思想在于機械裝置與電子技術(shù)相結(jié)合的自適應(yīng)控制氣動元件,使得機械手內(nèi)的系統(tǒng)由簡單的“開關(guān)控制”進化到高度的“反饋控制”,很大程度上提高了機電系統(tǒng)的可靠性[4]。
五、環(huán)保經(jīng)濟化。在當(dāng)今時代的發(fā)展下,環(huán)保無污染已成為機械設(shè)計的趨勢,所以設(shè)計的機械手為了節(jié)能減排應(yīng)該令結(jié)構(gòu)盡量的輕盈緊湊,必要時可利用二次能源或是環(huán)??山到鉄o污染的材料進行設(shè)計。
1.3本章小結(jié)
本章簡要的介紹了機械手在當(dāng)下的重要性、機械手的作用以及在國內(nèi)外機械手的發(fā)展動態(tài)以及在當(dāng)今時代下的發(fā)展趨勢,同時簡單陳述了本文的研究內(nèi)容和方向。
2 機械手方案的選擇
本章節(jié)介紹了機械手的坐標以及參數(shù),然后根據(jù)參數(shù)選擇總體方案的介紹,并列出主要性能參數(shù)和部件的基本數(shù)據(jù)。
2.1 機械手坐標形式的確定
機械手主要有如下所述的4種基本的坐標型式:
1. 直角坐標式——直角坐標的機械手結(jié)構(gòu)較簡單,精度高。工作位置為一條直線時十分適合選用本坐標形式。但是其占地較多
2. 圓柱坐標式——結(jié)構(gòu)相對復(fù)雜,但運動慣性小,不占太多空間,且工作的范圍廣闊。同時定位精度也可以達到較高的標準,在很多情況下都可以選取本形式。但由于其結(jié)構(gòu)限制,不能夾取地面上的工件。
3. 球坐標式——它具有響應(yīng)快、迅速、靈活且不占過多空間的優(yōu)點,工作范圍較廣。但是因為球坐標的結(jié)構(gòu)較為復(fù)雜,手部擺動幅度的誤差會由于手臂的前后伸縮運動從而引起比原先更大的中心定位誤差。
4. 關(guān)節(jié)式——具有三個轉(zhuǎn)動關(guān)節(jié),其中兩個關(guān)節(jié)軸線互相平行,它們形成一個較復(fù)雜的運轉(zhuǎn)范圍。具有響應(yīng)迅速,工作范圍大且不占很多空間的優(yōu)點,并且可以通用于多種場合。由于其復(fù)雜的結(jié)構(gòu)以至于位置精度不容易控制。
綜上所述,本設(shè)計的立式精鍛機自動上料機械手采用圓柱坐標式機械手來實現(xiàn)相關(guān)功能。
2.2 機械手的主要部件及運動
在選定了圓柱坐標以后,開始分析本文所設(shè)計的機械手關(guān)鍵的動作。立式精鍛機自動上料機械手自由度數(shù)為4,主要完成5個動作,分別為機械手手爪的夾緊與松開、機械手手腕的回轉(zhuǎn)、機械手手臂的伸出和收縮、機械手手臂的回轉(zhuǎn)及其上升下降。
因此,本機械手主要由七個構(gòu)件、六個缸體組成:
1)機械手手臂升降機構(gòu)——采用直線式液壓缸;
2)中間座部件——采用齒輪回轉(zhuǎn)來帶動機械手的手臂回轉(zhuǎn);
3)手臂回轉(zhuǎn)機構(gòu)——采用回轉(zhuǎn)式液壓缸;
4)手臂伸縮機構(gòu)——采用直線式液壓缸;
5)夾持式手部——方案與機械手手臂的伸縮機構(gòu)相同;
6)手腕部件——方案同3);
7)回轉(zhuǎn)定位油缸——進行工件位置的定位。
2.3 驅(qū)動機構(gòu)的選擇
本設(shè)計中組成自動上料機械手的關(guān)鍵部分即為驅(qū)動機構(gòu),驅(qū)動方案以及驅(qū)動裝置的選擇很大程度上決定了系統(tǒng)的性價比。因為擁有不同的動力源,所以工業(yè)機械手的驅(qū)動裝置就可以分為液壓驅(qū)動、氣動驅(qū)動、電動驅(qū)動和機械驅(qū)動這樣的四類[5]。根據(jù)本設(shè)計的情況進行考慮,則本文機械手的驅(qū)動方式為液壓驅(qū)動。這種方式容易操控,驅(qū)動力足夠,能夠較有效完成要求。
2.4 機械手參數(shù)的確定
機械手主要參數(shù):
1)能夠抓取的工件質(zhì)量:
工件直徑
2)坐標形式:圓柱坐標
3)自由度:
4)工作半徑的范圍:
5)手臂抬起的最高高度:
6)手臂運動參數(shù):
手臂德伸出與縮回范圍
手臂伸縮速度 伸出速度: 收縮速度:
手臂升降速度 上升 下降
手臂升降范圍
手臂回轉(zhuǎn)范圍 (這里?。?
手臂回轉(zhuǎn)速度
7)手腕運動參數(shù):
手腕回轉(zhuǎn)范圍
手腕回轉(zhuǎn)速度
2.5 本章小結(jié)
本章運用了已知的參數(shù)對整體自動上料機械手進行了方案設(shè)計,如機械手坐標形式、確定自由度和驅(qū)動方式的選擇。
5
3 機械手手部方案的確定與設(shè)計
在機械手手部抓取工件時,系統(tǒng)響應(yīng)應(yīng)快,精確度高,并且具有一定的可靠性。由于機械手爪抓取工件的參數(shù)有很大的差別,例如大小、形狀、尺寸的不同,因此需要由工件的參數(shù)來決定機械手的具體結(jié)構(gòu)。
3.1 手部結(jié)構(gòu)分類
一般手爪分為夾持式以及吸附式這兩大類[6]。
按照本設(shè)計的技術(shù)參數(shù)及上文的方案分析,由于本設(shè)計的機械手所抓的坯料多為回轉(zhuǎn)型坯料,為了保證抓取的可靠性,則選取夾鉗式手部設(shè)計,本章節(jié)便只介紹夾鉗式手部。
它由機械手手指、傳動機構(gòu)以及驅(qū)動裝置三部分組成[7]??梢宰バ阅芤约俺叽绺鞑煌幕剞D(zhuǎn)類零件如套筒等零件。它最常見驅(qū)動方式的為液壓驅(qū)動,也有氣動或者電驅(qū)動的驅(qū)動形式[8]。常用傳動的機構(gòu)來夾緊或放開工件。
平移型手指靠手指的平移來抓平板或是方料。在抓取各種大小不一的圓棒時,精度的影響不大。但制造時較為不便且較占空間。
回轉(zhuǎn)型手指靠回轉(zhuǎn)運動抓取。這類手指結(jié)構(gòu)簡便,制造較易。因此這類手指在工業(yè)上應(yīng)用得較為廣泛。但由于工件的不同會使得精度不太高。其分類形式以及簡圖如圖,一支點回轉(zhuǎn)型,兩支點回轉(zhuǎn)型,移動型
本文選取圖中的b)結(jié)構(gòu)作為手指結(jié)構(gòu)。
圖3.1 機械手結(jié)構(gòu)類型
3.2 夾鉗式手部設(shè)計的要求
1. 夾緊力、驅(qū)動力要足夠[9]——夾緊力若過大會對工件有一定的磨損,也可能會產(chǎn)生大量的能耗,使得系統(tǒng)的經(jīng)濟性大大降低;相反,若力量過小則會夾持不了工件或是夾持力不夠從而產(chǎn)生松動甚至是脫落,無法保證抓取的安全性。所以,在確定夾緊力時,需要多方面考慮系統(tǒng)的動靜平衡以及慣性問題,保證夾緊的可靠性,防止系統(tǒng)松動和脫落等危險現(xiàn)象。
2. 機械手的手指之間應(yīng)該有足夠的開閉角度[10]——手指在工作時擁有足夠的開閉范圍則可以簡單順利地抓放坯料或工件。若工件的直徑不同,則需要按直徑大的工件來進行開閉角以及開閉范圍的考慮與選取。
3. 保證工件在手指內(nèi)的夾持精度——手指能夠較準確地定位到被夾緊工件的位置。例如凸輪或是帶有曲面的等工件,保證它們可靠的位置精度是十分重要的一部分。
4. 要求擁有可靠足夠安全的強度和一定的剛度,防止在既有慣性力又有振動的環(huán)境下防止零件失效(斷裂或彎曲變形)。因此也需使結(jié)構(gòu)盡量緊湊輕盈。
5. 應(yīng)考慮互換性和通用性,在大多數(shù)的情況下,機械手的手部是根據(jù)設(shè)定的要求專門設(shè)計的,為了讓其有更多的功能或作用,使其更加的通用,提高它的適用性,來適應(yīng)參數(shù)、形態(tài)各異的工件需要。也可以對機械手的零件進行互換(滿足裝配要求與系統(tǒng)正常運轉(zhuǎn)即可)。
3.3 機械手手部的設(shè)計
3.3.1 手部夾緊裝置
為了完成擬定的設(shè)計目標,本文設(shè)計的手指結(jié)構(gòu)在上文3.1已經(jīng)介紹,傳動機構(gòu)采用滑槽杠桿機構(gòu),夾緊裝置選擇常開式,油的壓力作為驅(qū)動來帶動拉桿進行運動,并且通過傳動機構(gòu)的帶動來實現(xiàn)手指的抓取運動。
3.3.2 手爪的力學(xué)分析
本文所選取的滑槽杠桿式手部的機構(gòu)如下圖3.2:
圖3.2 手部結(jié)構(gòu)受力分析簡圖
因為圓柱銷為平衡狀態(tài),其受合力=0,可得出
對其進行變形得到公式3.1
(3.1)
銷對機械手手指的反作用力為,因為二力平衡,所以有下式3.2
(3.2)
由手指的平衡條件得公式3.3,
(3.3)
因為
所以
(3.4)
由上文的分析與計算可得出結(jié)論:當(dāng)驅(qū)動力F確定之后,如果角繼續(xù)擴大,那么握力FN也會隨著角度的增加而增大。但角如果過大,則會導(dǎo)致活塞桿上下移動過大,使得手爪的結(jié)構(gòu)也相應(yīng)地增大,不適合之后對其他部件的設(shè)計。因此初步確定角的范圍在之間,本設(shè)計中此角度取。
3.3.3 夾緊力及驅(qū)動力的計算
保證手爪能夠可靠地抓住工件的關(guān)鍵因素在于手指的夾緊力。因此必須對力的三要素進行具體計算分析。載荷包括重力產(chǎn)生的靜載荷以及系統(tǒng)運動時產(chǎn)生的動載荷。
1)最小夾緊力確定
最小夾緊力根據(jù)式3.5進行分析與計算:
(3.5)
其中,安全系數(shù) ,工況系數(shù)根據(jù)公式3.6進行計算
(3.6)
其中
— 最大上升加速度;
g — ;
(3.7)
— 系統(tǒng)響應(yīng)時間,此處取0.5s;
— 方位系數(shù),根據(jù)實際情況,這里取4.0;
— 坯料所受的重力,在本文中此重力均為G=mg=60x9.8=588N。
— 運載工件時重力方向的最大上升速度,由前文分析可得出,,將以上結(jié)果代入公式3.7計算出加速度a=0.2;
因此,綜上所述,,,,G=588N,根據(jù)公式3.2可得出夾緊力為3598.56N。
2)夾緊缸驅(qū)動力的計算
因為本機械手設(shè)計所選取的液壓缸為單作用缸,所以其作用力可以由3.8得
(3.8)
— 活塞直徑;
— 活塞桿直徑;
— 工作壓力
上述參數(shù)單位均為SI,由此可確定驅(qū)動力:
(2)由公式3.4可以得出公式3.9
(3.9)
將b=90mm,,a=95mm帶入上式,得
(3) 一般取效率值
由此得出
3.4 夾緊缸尺寸計算
表 3.1 液壓缸工作壓力
活塞上外力F(kN)
液壓缸工作壓力
(MPa)
活塞上外力F(kN)
液壓缸工作壓力
(MPa)
由表3.1分析,本設(shè)計中實際工作壓力,不難看出。
如圖,在缸的無桿腔進油時,根據(jù)公式3.10計算其內(nèi)徑
(3.10)
回油時系統(tǒng)壓力,公式可化為3.11
(3.11)
當(dāng)缸的有桿腔進油時,根據(jù)公式3.12計算其內(nèi)徑:
(3.12)
F — 驅(qū)動力;
P1 P2 — 此處??;
— 這里效率值取;
d — 活塞桿直徑,可利用下式3.13計算
(3.13)
表3.2 壓力與往復(fù)速度比對照表
液壓缸工作壓力
往復(fù)速度比
由于工作壓力為,所以,得
再將已知結(jié)果代入3.5可得
取,查液壓缸內(nèi)徑推薦標準JB826-66確定其內(nèi)徑,外徑推薦標準JB1086-7確定其外徑。綜上,有
液壓夾緊缸的結(jié)構(gòu)件圖見下圖3.3
圖3.3 夾緊缸結(jié)構(gòu)圖
3.5 螺栓尺寸的選定
3.5.1 手指部螺栓的分析與計算
由設(shè)計結(jié)構(gòu)分析,手部需要有螺紋緊固件對其進行預(yù)緊。又根據(jù)前文的受力分析可知,在機械手手部受力最大螺栓其預(yù)緊力力為5382.84N,許用應(yīng)力2MPa,根據(jù)螺栓設(shè)計公式3.13
(3.14)
其中,預(yù)緊力為夾緊力5382.84N,得出d1需大于等于6.6mm,根據(jù)GB/T70.1-2016進行取整,所以這里選用內(nèi)六角圓柱頭螺釘M8。
3.5.2 手架部分螺栓的分析與計算
機械手的手架部分需要有4個螺栓對其進行固定,由于夾緊力在手指端部,因此,此螺栓組受傾覆力矩影響。在手指夾取工件時,手架左側(cè)螺栓被壓緊,右側(cè)螺栓被放松;當(dāng)手指放開工件時,右側(cè)螺栓被壓緊,左側(cè)螺栓被放松。根據(jù)螺栓所受最大載荷公式3.15
(3.15)
其中,根據(jù)力矩公式M=Fl得出F=5382.54N,l=345mm,得出螺栓所受的力矩為1856.98Nm。由于4個螺栓在手架均勻分布,因此=45mm。根據(jù)公式3.8可得出螺栓最大工作載荷為10316.6N。由公式3.7可得出螺栓小徑4.6mm,根據(jù)GB/T70.1-2016,對計算結(jié)果進行取整,由此選取內(nèi)六角頭圓柱頭螺釘M6。
3.6 手部拉緊軸的分析
3.6.1 軸的載荷分析和計算
根據(jù)手部的分析,機械手手部的軸應(yīng)為拉緊軸,所受力為兩端的拉緊力,對于夾持式手部的結(jié)構(gòu)分析,軸中由開槽平頭緊定螺釘固定。因此,拉緊軸僅受彎矩影響,受力分析圖及其彎矩圖如圖3-4所示。由已知夾緊力為5382.54N,根據(jù)參數(shù)以及手部結(jié)構(gòu)的參數(shù),取夾緊力距離軸為195mm,根據(jù)彎矩公式M=Fl得出彎矩為1049.595Nm。
圖3.4 軸的受力分析及其彎矩圖
如上圖所示,F(xiàn)1=F3=5382.84N,F(xiàn)2=10765.68N,所以軸所受最大載荷即為1049.595Nm。根據(jù)軸的直徑設(shè)計公式3.16
(3.16)
其中M為1049.595Nm,由前文可知,許用應(yīng)力=2MPa,因此可得出軸的直徑d6.8mm,取整則為8mm。由于這為拉緊軸,載荷分布較簡單,因此不需要分段,僅需一段即可。軸的裝配圖則如圖3.5所示。
圖3.5 機械手手部拉緊軸裝配圖
3.6.2軸的材料的選擇
由于機械手手部在抓取物體時會在手爪處產(chǎn)生應(yīng)力集中,因此在軸上會產(chǎn)生一定的彎矩,在軸的運轉(zhuǎn)過程中亦會產(chǎn)生大量的熱量,需要能夠抗氧化并且能夠耐一定的高溫。如上圖3-5所示,為了手部抓取不產(chǎn)生松動或脫落,保證抓取的可靠性,同時考慮經(jīng)濟性。因此選用經(jīng)過耐熱鋼作為軸的材料。
3.7 銷連接的設(shè)計
銷按用途分為用于定位的定位銷,用于連接的連接銷等[11]。前者是機械結(jié)構(gòu)進行裝配時十分重要的定位零件,有些銷也可以傳遞較小的載荷。
銷的類型有很多,例如圓錐銷,圓柱銷,槽銷等,這些銷都是標準件,因此可直接選用。本設(shè)計采用圓柱銷,由于圓柱銷需要進行過盈配合從而固定在銷的孔內(nèi),并且機械手的零部件需要卡緊以保證系統(tǒng)的安全可靠,所以選擇的過盈配合連接。在裝配前,需要對其相關(guān)精度進行復(fù)查。
3.8 本章小結(jié)
本章介紹了機械手的結(jié)構(gòu)及其種類,并通過已選取的方案對于機械手手爪的夾緊力、液壓缸的驅(qū)動力進行分析,并根據(jù)表格選取液壓缸的內(nèi)外徑尺寸。根據(jù)已知許用應(yīng)力設(shè)計手部軸,螺栓的直徑,根據(jù)尺寸設(shè)計出可靠安全的機械手手部。
4 機械手手腕結(jié)構(gòu)設(shè)計
機械手手腕安裝在手臂部分與手爪部分之間,其作用是通過臂部的運動(如移動,回轉(zhuǎn)等)來更加完善地改變或者調(diào)整機械手的手部在空間內(nèi)操作的方位,使得機械手運動的范圍更廣,同時令機械手適應(yīng)性更強。
4.1 腕部設(shè)計所需滿足的要求
1. 結(jié)構(gòu)盡可能緊湊、質(zhì)量小
機械手的手腕處于機械手手臂和機械手手爪之間,則整個機械手手部的動載荷以及靜載荷都需要由手臂部承載。因此,不難看出,手腕部的結(jié)構(gòu)、質(zhì)量和其載荷分布,都會對機械手各部分產(chǎn)生影響。所以在設(shè)計時,結(jié)構(gòu)需緊湊并且輕盈。
2. 合理布局其結(jié)構(gòu)
機械手的腕部是整體系統(tǒng)的執(zhí)行機構(gòu),還需要有支撐和連接的作用。所以,在能保證系統(tǒng)正常運作的情況下,還需要能夠有足夠安全的強度以及剛度。除此之外,還應(yīng)結(jié)合機械手的實際情況對整體進行全面完善的考慮并合理布局。例如機械手腕部、機械手臂部、機械手手爪部的連接。還有對于手腕部分的自由度數(shù)的檢測以及壽命、性能的分析。
3. 完整分析工作條件
根據(jù)本文參數(shù)以及條件,機械手在抓料上料至立式精鍛機上時,環(huán)境對其沒有太多的影響,而且機械手沒有在高溫高壓的惡劣環(huán)境中,亦沒有在具有腐蝕性的介質(zhì)中進行工作。所以環(huán)境對系統(tǒng)的影響不大。
4.2 腕部結(jié)構(gòu)的選擇
手腕的動作不是很多,但由于其為連接部件,所以其結(jié)構(gòu)需要非常緊湊。在力量可以保證的前提下,質(zhì)量盡可能的要小,手腕部分所連接的手爪的夾緊機構(gòu)經(jīng)常要與手腕結(jié)構(gòu)一同考慮。
本設(shè)計條件所需要設(shè)計的機械手要求其手腕旋轉(zhuǎn)90度,1個回轉(zhuǎn)的自由度。驅(qū)動方案已在第二章的方案分配中介紹,此處不再敘述。
4.3 腕部的設(shè)計計算
機械手的手腕在回轉(zhuǎn)時,克服以下阻力才能夠正常運轉(zhuǎn):
1. 腕部摩擦力產(chǎn)生的力矩
(4.1)
2. 回轉(zhuǎn)時產(chǎn)生的偏心矩
(4.2)
式中
——重心到軸線的距離()。
3. 慣性矩
(4.3)
4. 帶動系統(tǒng)的驅(qū)動力矩
(4.4)
4.3.1 腕部參數(shù)的設(shè)定
自動上料機械手的手指夾緊結(jié)構(gòu)、手腕回轉(zhuǎn)結(jié)構(gòu)這幾個結(jié)構(gòu)可以等效成為一個高100cm,直徑100mm,能夠旋轉(zhuǎn)180度的圓柱體,抓取工件的質(zhì)量為。其所受的重力為。
4.3.2 腕部驅(qū)動條件的確定
1. 摩擦阻力矩
(4.5)
2. 系統(tǒng)啟動時間,此處取
s (4.6)
回轉(zhuǎn)角速度
(4.7)
3. 慣性矩
(4.8)
,
腕部質(zhì)量約為
通過式4.8:
4. 回轉(zhuǎn)時產(chǎn)生的偏心矩(此處可忽略)
5. 能夠驅(qū)動系統(tǒng)的總力矩
N·m
取效率,可計算
N·m
有上述計算可知,液壓缸回轉(zhuǎn)時所產(chǎn)生的驅(qū)動力矩必須大于總阻力矩,則有
對公式進行變形,得出式
(4.9)
式中:
— 系統(tǒng)運轉(zhuǎn)時產(chǎn)生的總力矩;
P — 系統(tǒng)運轉(zhuǎn)時的壓力差
R — 內(nèi)孔半徑;
r — 軸的半徑;
b — 葉片寬。
圖4.1 回轉(zhuǎn)液壓缸結(jié)構(gòu)示意圖
如上圖所示,,并由式4.9,得出
4.4 腕部零件的設(shè)計
4.4.1 腕部軸承的設(shè)計
由于手腕部是橫向放置,軸的最右端與機械手手爪部分相連接。則軸的右端所受轉(zhuǎn)矩為8Nm,腕部所受重力為132.01kg,即1293.70N,左端軸承徑向力,手腕所受重力與此轉(zhuǎn)矩相平衡。根據(jù)力學(xué)平衡公式及長度可得出,=879.5N。因為手腕為橫向放置,因此軸承不受軸向載荷。選用圓錐滾子軸承即可,綜合手腕結(jié)構(gòu)考慮并根據(jù)GB/T297-2013選用32015及32013的圓錐滾子軸承。相同的,在軸的左端軸承也僅受徑向力作用且僅是定位的作用,所以可以選用深溝球軸承。根據(jù)GB/T276-2013,本設(shè)計中,缸體右側(cè)選用6015深溝球軸承,缸體左側(cè)選用6209軸承。軸承需用卡圈對其進行一定的預(yù)緊定位作用,以此來防止軸向游隙。
本機械手中,其軸轉(zhuǎn)速并不大,且不在高溫的工作介質(zhì)中工作。因此,考慮到密封以及承受的載荷,這里采取油脂潤滑的方式進行潤滑。裝脂量最適宜裝在軸承內(nèi)部空間容積的。
4.4.2腕部鍵的設(shè)計
由于軸受轉(zhuǎn)矩影響,且不受軸向力,因此選用普通平鍵進行連接即可。根據(jù)GB/T1096-2003,擬定普通平鍵108,長度取35,軸的直徑為35。根據(jù)普通平鍵連接的強度條件公式4.10
(4.10)
其中,根據(jù)上文分析已知轉(zhuǎn)矩為8Nm,h為8mm。則可得出其應(yīng)力為3.57MPa,遠小于許用應(yīng)力。因此,普通平鍵108可以滿足要求。
4.5 本章小結(jié)
本章介紹了機械手手腕部分設(shè)計的基本要求,且給出了機械手手腕的結(jié)構(gòu)設(shè)計,通過已知的手腕結(jié)構(gòu)參數(shù)結(jié)構(gòu)設(shè)計計算出機械手腕部所受的載荷,設(shè)計出驅(qū)動機構(gòu)的液壓缸尺寸,同時分析與選用手腕部分上的軸承部分以及軸上的鍵的選取與校核,使其能夠正常驅(qū)動,運轉(zhuǎn)可靠。
5 機械手手臂方案的確定與設(shè)計
機械手臂部運動的作用:帶動手部的運動且支撐手腕部分及手爪部分。手部的位姿(位置及姿態(tài))若改變,則需要利用機械手手腕部分的自由度來完成。所以,至少具備3個自由度才能滿足其運動要求。它們分別為手臂的伸縮運動,升降運動和手臂的回轉(zhuǎn)運動,上述的這些運動利用驅(qū)動和傳動機構(gòu)來完成。機械手的手臂部分在運動時直接承受了機械手的腕部、機械手的手部和工件的動靜載荷。[12]所以機械手手臂的總體結(jié)構(gòu)、手臂工作的范圍及其靈活性對于系統(tǒng)性能的影響是顯而易見的。
5.1 滿足手臂運動的要求
1. 臂部所受載荷要足夠,質(zhì)量要盡可能的小
1)恰當(dāng)?shù)奶岣呤直鄣闹蝿偠?,支撐點的距離要盡量合適。
2)對手臂處的載荷詳細考慮,合理布局。
3)采取更精密的公差配合
2. 臂部速度快,慣性盡量減少
機械手在確定了行程范圍、生產(chǎn)節(jié)拍后,便可知其速度大小。因此上述的兩個參數(shù)需要盡量大。機械手臂部的質(zhì)量也需要一定的減少。可以通過下列三種方法來減少慣性:
1) 采用密度較低的材料如鋁合金等,減少重量;
2) 對手臂輪廓的尺寸進行一定的縮??;
3) 手臂的回轉(zhuǎn)運動盡量在較小的前伸位置下,減小手臂的回轉(zhuǎn)半徑;
3. 手臂不能自鎖
由于系統(tǒng)運動時若不平衡,那么系統(tǒng)很有可能由于摩擦以及動平衡的原因產(chǎn)生自鎖現(xiàn)象,這就需要對系統(tǒng)不自鎖的條件進行考慮,使得手臂能夠順利完成其工作。
5.2 機構(gòu)的選擇
根據(jù)實際情況以及本文所設(shè)定的參數(shù)可知,此處選擇類似雙導(dǎo)桿伸縮機構(gòu),并且采用雙作用液壓缸進行液壓驅(qū)動。由于希望增加伸縮運動的距離,因此這里將伸縮機構(gòu)更改為燕尾型導(dǎo)軌。
5.3 手臂的設(shè)計計算
先根據(jù)前文已知的參數(shù)和已設(shè)計的系統(tǒng)來對本章的系統(tǒng)進行大致的估計,并初步計算設(shè)計出一個結(jié)構(gòu),并且可以類比與之相似的結(jié)構(gòu),重新進行系統(tǒng)的完善。根據(jù)不斷地分析,便可設(shè)計出其結(jié)構(gòu)。
液壓驅(qū)動力可通過公式進行計算
(5.1)
5.3.1 系統(tǒng)摩擦力的計算
由前文可知,本設(shè)計選取燕尾式導(dǎo)軌,此時的計算公式為:
(5.2)
— 所有構(gòu)件重力;
— 當(dāng)量摩擦系數(shù),可根據(jù)下式5.3計算:
(5.3)
— 鋼對青銅時取摩擦系數(shù)
— 導(dǎo)軌的夾角:
若,
若,
手腕質(zhì)量大約為200kg,所受重力,手臂質(zhì)量約為,則其所受重力,機械手抓取的工件,所受重力,進行計算可知
5.3.2 手臂密封裝置阻力的分析與計算
前文第三章已分析系統(tǒng)驅(qū)動壓力為,所以有下式5.4;
(5.4)
F為系統(tǒng)的驅(qū)動力。
5.3.3 慣性力的計算
慣性力計算公式如式5.5:
(5.5)
式中
—運動狀態(tài)下零件的重力;
— 重力加速度,此處仍取
— 臂部伸出的速度;
— 機械手手臂系統(tǒng)啟動過程的時間,一般可取。
本文所設(shè)計的自動上料機械手根據(jù)參數(shù)分析可知其不屬于重載,且運轉(zhuǎn)速度不快,又由于參數(shù)臂部伸出的=0.233m/s,所以這里取=0.2s,代入上式,得
取=0.05F,將以上的計算結(jié)果代入公式 (5.1)
可以得出
則
F=2147.12N
5.4 液壓缸壓力和結(jié)構(gòu)的分析
在已知驅(qū)動力之后,根據(jù)表3.1選擇液壓缸的工作壓力P=1MPa。其結(jié)構(gòu)示意圖如圖5.1。
圖5.1液壓缸結(jié)構(gòu)圖
此處液壓缸的內(nèi)徑計算方式以及選定方式如同章節(jié)3.4,因此這里僅列出計算結(jié)果,過程不再詳細敘述。
解此方程可得出
D2=61.8mm
取D1,D2中的最大值,并根據(jù)液壓缸推薦標準,取內(nèi)外徑標準值,則D=80mm,d=30mm。
5.5 手臂部分螺栓的設(shè)計
根據(jù)回轉(zhuǎn)機構(gòu)進行分析,螺栓組是由6個承受橫向載荷的螺栓連接,總受力為2147.12N,根據(jù)每個螺栓受力公式5.11可得每個螺栓受力為214.71N。
(5.7)
可得每個螺栓受力為214.71N。根據(jù)螺栓的預(yù)緊力公式5.12
(5.8)
為材料的摩擦系數(shù),取值范圍為,此處取值。f是接合面的摩擦系數(shù),因為螺栓的材料為鋼,同時查取參考文獻11,得此處的摩擦系數(shù)為0.4,螺栓數(shù)量為6個,z=6,i為接合面數(shù),結(jié)構(gòu)中螺栓連接了兩個面則有i=2,由此得出螺栓所需預(yù)緊力為322.07N。再由螺栓設(shè)計公式3.7,計算出出螺栓小徑需要大于8.1mm,對計算結(jié)果根據(jù)GB/T70.1-2016進行取整,因此這里選取M10的內(nèi)六角圓柱頭螺釘進行緊固連接。
5.6 手臂部分的裝配以及技術(shù)要求
手臂回轉(zhuǎn)部分依靠上端蓋與手臂的伸縮機構(gòu)相連接。對于本設(shè)計的手臂回轉(zhuǎn)機構(gòu)的主軸的軸承進行密封,根據(jù)GB/T3452.1-2005,利用O型橡膠密封圈155x5.3進行密封,各密封件裝配之前需浸透油。
手臂升降部分在螺紋緊固件緊固時,必須使用合適的旋具或扳手。在進行液壓系統(tǒng)的裝配時可以用密封填料,但需要防止泄露進系統(tǒng)內(nèi)。
5.7 本章小結(jié)
本章介紹了機械手手臂設(shè)計的基本要求,根據(jù)參數(shù)選擇手臂設(shè)計的方案并通過摩擦阻力,慣性力,重力等的力學(xué)分析設(shè)定了手臂驅(qū)動液壓缸的內(nèi)徑與外徑。并對一定的零件進行設(shè)計與選取。同時也對手臂部分的技術(shù)要求作了一定的介紹。
6 機械手機身結(jié)構(gòu)設(shè)計
機械手機身的作用既能夠直接支撐手臂,也能夠驅(qū)動手臂。在一般情況下,它能完成手臂部分的運動,如回轉(zhuǎn)和升降。安裝在機械手部件上是它們的傳動機構(gòu)。機身的形式較多,在大多數(shù)情況下,為固定的機身,特別的機身也可以沿著軌道工作。
6.1 機身整體構(gòu)思
根據(jù)本設(shè)計的參數(shù)以及本設(shè)計的要求,機械手需要實現(xiàn)其手臂的回轉(zhuǎn)運動,一般來說,在機身處設(shè)置機械手臂的回轉(zhuǎn)機構(gòu)。為了使得設(shè)計得合理安全可靠,因此就要進行綜合的考慮及分析。
機身是機械手的重要組成部分,它能夠?qū)C械手的運動產(chǎn)生極大的影響。比較普遍的機身結(jié)構(gòu)有回轉(zhuǎn)缸位于升降下的結(jié)構(gòu),其承受力矩大,但精度不能保證;回轉(zhuǎn)缸位于升降上的結(jié)構(gòu),其結(jié)構(gòu)緊湊,但質(zhì)量較大。
綜上,并進行綜合考慮,本設(shè)計采取第二種結(jié)構(gòu)即回轉(zhuǎn)缸置于升降缸之上的結(jié)構(gòu)。本設(shè)計的機械手包括了機械手機身的回轉(zhuǎn)運動和機械手升降運動這兩種運動?;剞D(zhuǎn)系統(tǒng)液壓缸的主轉(zhuǎn)軸與升降系統(tǒng)液壓缸共用一個活塞桿。選用空心的活塞桿,活塞桿內(nèi)裝一個花鍵套,軸與此花鍵采取基孔制過盈配合,活塞的升降運動通過花鍵軸來帶動?;ㄦI軸和升降液壓缸缸體的下端蓋用普通平鍵進行連接固定,下端蓋和連接地面的系統(tǒng)底座來進行固定。這樣就定位了花鍵軸,同時也利用了花鍵軸完全定位了活塞桿[13]。此結(jié)構(gòu)由于活塞桿在內(nèi)部所以十分緊湊。
由于前文已分析驅(qū)動結(jié)構(gòu),此處也使用液壓驅(qū)動的方式進行驅(qū)動。為了能夠使葉片回轉(zhuǎn),回轉(zhuǎn)液壓缸利用進油孔和排油孔分別通向回轉(zhuǎn)葉片的兩側(cè)即可?;剞D(zhuǎn)的角度大小一般通過擋塊確定。根據(jù)本設(shè)計的條件,就意味著回轉(zhuǎn)葉片之間所轉(zhuǎn)動的角度大小,為了達成設(shè)計的基本要求,本設(shè)計采用動靜片之間回轉(zhuǎn)的角度為。
6.2 機身回轉(zhuǎn)機構(gòu)的分析與計算
6.2.1 液壓缸驅(qū)動力矩的計算
回轉(zhuǎn)液壓缸的大致尺寸與結(jié)構(gòu)如圖6.1所示。且驅(qū)動力矩需要滿足式6.1
圖6.1 機身的力學(xué)分析與大致尺寸的結(jié)構(gòu)簡圖
(6.1)
一般, 根據(jù)式6.2進行計算;
(6.2)
式中
;
— 啟動時間;
J0 — 手臂在其回轉(zhuǎn)時產(chǎn)生的轉(zhuǎn)動慣量(N·m·s2)。
當(dāng)其回轉(zhuǎn)時,手臂零件重心與回轉(zhuǎn)軸的距離為,則其轉(zhuǎn)動慣量可通過公式進行計算
(6.3)
式中
Jc — 回轉(zhuǎn)零件產(chǎn)生的轉(zhuǎn)動慣量,可根據(jù)6.4計算
; (6.4)
— 回轉(zhuǎn)缸的背壓力矩,
此處可以近似為零。
回轉(zhuǎn)結(jié)構(gòu)近似視為長,的圓柱體,,,取,
N·m·s2
N·m·s2
由式6.2計算:
N·m
又根據(jù)式6.1計算,最終解出結(jié)果
N·m
6.2.2 回轉(zhuǎn)缸尺寸的選定
(6.5)
對上式進行變形得出式
(6.6)
擬取,,,代入式得
132mm
根據(jù)液壓缸推薦標準系列,取標準值D=150mm。
6.3 機身升降機構(gòu)的計算
6.3.1 手臂偏重力矩的計算
由前文可知,N,偏重力臂mm。
偏重力矩由公式
()
將已知數(shù)據(jù)代入上式,得
6.3.2 手臂升降不自鎖條件分析計算
手臂在其重力的作用下會有向下的運動,而立柱的導(dǎo)套防止這種趨勢,如圖6.1所示。
根據(jù)兩力平衡的條件可知
(6.8)
即
(6.9)
而系統(tǒng)不自鎖的條件為:
(6.10)
即
一般取f=0.15,則
(6.11)
當(dāng)mm時
mm
根據(jù)上述的分析,可得出結(jié)論:導(dǎo)套高度最小高度為,根據(jù)綜合情況分析取。
6.3.3 手臂升降時驅(qū)動力的計算
()
取。
余下參數(shù)的的計算同上。
(1) 的計算
()
由前文參數(shù)以及分析可得,速度,,約為,根據(jù)式
N
(2)
N
推出
N
(3)
根據(jù)密封方式取得
(4)
最終得出總驅(qū)動力
6.3.4 液壓缸尺寸的初步確定
由上文分析可得
取,則應(yīng)得出,查閱液壓缸內(nèi)徑推薦標準得:
6.4 回轉(zhuǎn)液壓缸結(jié)構(gòu)確定
定位油缸的作用為在手臂回轉(zhuǎn)時進行定位。其進油方式是單口進油,出油方式為單口出油。
6.4.1 定位桿的受力分析
圖 6.2 桿的力學(xué)分析
如上圖,桿所受力為
由圖進行分析可得
6.4.2 定位缸的設(shè)計計算
由前文介紹已知,液壓缸的工作壓力,
則本節(jié)的定位缸內(nèi)徑為
因此取,根據(jù)液壓小徑推薦標準選取小徑為,定位缸的結(jié)構(gòu)簡圖如圖6.3所示
圖6.3 回轉(zhuǎn)定位油缸結(jié)構(gòu)簡圖
6.5 齒輪的計算
本設(shè)計中采用直尺圓柱齒輪進行傳動,取輸入功率為10kw,由于本設(shè)計僅考慮傳動,所以選用兩個相同齒輪進行傳動。齒輪轉(zhuǎn)速為960r/min,壓力角取,精度取級,根據(jù)參考文獻11,材料選用40Cr,熱處理采用調(diào)質(zhì)處理,齒面硬度為280HBS。
選齒輪齒數(shù)為。根據(jù)齒面疲勞強度設(shè)計公式
(6.16)
其中,取,,u取3.2,選取,,查閱參考文獻11的表10-5得出彈性影響系數(shù)。同時計算重合度系數(shù)。
查參考文獻11可知齒輪的接觸疲勞極限為550MPa,根據(jù)安全性以及壽命的考慮,取其接觸疲勞許用應(yīng)力為520MPa。因此,將上列已知參數(shù)帶入公式6.16中,得出
再對分度圓直徑進行一定的調(diào)整,其中齒輪的圓周速度,齒寬=60.9mm,根據(jù)參考文獻11得:
,根據(jù)修正分度圓公式=65.44,則模數(shù)。所以,齒輪的模數(shù),齒數(shù),分度圓直徑。精度與壓力角如上文所述。
6.6 連接件的設(shè)計
6.6.1 回轉(zhuǎn)定位油缸鍵的選取
由于軸受轉(zhuǎn)矩影響,因此利用普通平鍵進行連接即可。查閱鍵的國家標準GB/T1096-2003,擬定選用普通平鍵,長度l取20,軸的直徑為25且軸為基孔制配合。根據(jù)前文公式4.6
(4.10)
其中,力為F/2=5520N,轉(zhuǎn)矩為55200.0875=483Nm,h為7mm。則可得出其應(yīng)力為110MPa,可承受靜載荷以及輕微沖擊,滿足要求。因此,普通平鍵87可以滿足要求。
6.6.2 回轉(zhuǎn)定位油缸銷的選取
由于圓錐銷在受到橫向力的時候會進行自鎖現(xiàn)象。安裝拆卸較方便,精度較高,可進行多次的拆卸與裝配,且對精度沒有影響。所以本設(shè)計根據(jù)GB/T117-2000選取圓錐銷B845進行連接。
6.7 本章小結(jié)
本章提出了機身的整體設(shè)計方案,并且在此基礎(chǔ)上確定選取了回轉(zhuǎn)液壓缸以及回轉(zhuǎn)定位缸的尺寸。在對于機構(gòu)的設(shè)計方案完成后,對系統(tǒng)內(nèi)的部分重要零件(如齒輪)以及連接件(鍵,銷)進行了分析與設(shè)計計算,選取適合本方案的零件。
7 機械手零部件三維建模
在本設(shè)計方案完全確定后,便開始對設(shè)計的立式精鍛機自動上料機械手進行三
收藏
編號:2484942
類型:共享資源
大?。?span id="qxjhmo7" class="font-tahoma">76.08MB
格式:ZIP
上傳時間:2019-11-26
50
積分
- 關(guān) 鍵 詞:
-
立式
精鍛機
自動
機械手
設(shè)計
cad
- 資源描述:
-
立式精鍛機自動上料機械手設(shè)計含9張CAD圖,立式,精鍛機,自動,機械手,設(shè)計,cad
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。