2019-2020年高一數學 4.3任意角的三角函數(第一課時) 大綱人教版必修.doc
《2019-2020年高一數學 4.3任意角的三角函數(第一課時) 大綱人教版必修.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高一數學 4.3任意角的三角函數(第一課時) 大綱人教版必修.doc(5頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高一數學 4.3任意角的三角函數(第一課時) 大綱人教版必修 ●教學目標 (一)知識目標 1.任意角三角函數的定義; 2.三角函數的定義域. (二)能力目標 1.理解并掌握任意角三角函數的定義; 2.理解三角函數是以實數為自變量的函數; 3.掌握正弦、余弦、正切函數的定義域. (三)德育目標 使學生通過任意角三角函數的定義,認識銳角三角函數是任意角三角函數的一種特例,加深特殊與一般關系的理解. ●教學重點 1.任意角三角函數的定義. 2.正弦、余弦、正切函數的定義域. ●教學難點 正弦、余弦、正切函數的定義域. ●教學方法 講授法 1.通過三角函數定義的變化:從銳角三角函數到任意角三角函數,由邊的比變?yōu)樽鴺伺c距離、坐標與坐標、距離與坐標的比,使學生在理解掌握定義的基礎上,加深特殊與一般關系的理解. 2.通過對定義的剖析,使學生對正弦、余弦、正切函數的定義域有比較深刻的認識,達到突破難點之目的. ●教具準備 幻燈片兩張 第一張:課本P13圖4-10(記作§4.3.1 A) 第二張:本課時教案后面的預習提綱(記作§4.3.1 B) ●教學過程 Ⅰ.課題導入 [師]在初中我們學習了銳角三角函數,它是以銳角為自變量,邊的比值為函數值的三角函數,前面我們對角的概念進行了擴充,并學習了弧度制,知道角的集合與實數集是一一對應的,在這個基礎上,今天我們來研究任意角的三角函數(板書課題). Ⅱ.講授新課 [師]對于銳角三角函數,我們是在直角三角形中定義的,今天,對于任意角的三角函數,我們利用平面直角坐標系來進行研究. 設α是一個頂點在原點,始邊在x軸非負半軸上的任意角(這點應該給學生強調清楚,課本上未做強調是不妥的),α的終邊上任意一點P的坐標是(x,y)(非頂點).它與原點的距離是r(r=>0)(打出幻燈片§4.3.1 A) 注意:(1)以后我們在平面直角坐標系內研究角的問題,其頂點都在原點,始邊都與x軸的非負半軸重合. (2)OP是角α的終邊,至于是轉了幾圈,按什么方向旋轉的不清楚,也只有這樣,才能說明角α是任意的. (3)角α的終邊只要不落在坐標軸上,就只能是如圖所示四種位置中的一種. (4)角α的終邊不是不能落在坐標軸上,而是說落在坐標軸上的情況屬于特殊情形,我們將在研究問題的過程中對其進行討論. 那么,(1)比值叫做α的正弦,記作sinα,即sinα=. (2)比值叫做α的余弦,記作cosα,即cosα=. (3)比值叫做α的正切,記作tanα,即tanα=. (4)比值叫做α的余切,記作cotα,即cotα=. (5)比值叫做α的正割,記作secα,即secα=. (6)比值叫做α的余割,記作cscα,即cscα= 以上六種函數統(tǒng)稱為三角函數. [生]三角函數是不是函數? [師]是. [生]既然是函數,那么對于一個確定的角,它的函數值就應該是確定的.為什么這里的定義,對于一個確定的角,函數值不確定呢? [師]哪個函數值不確定呢? [生]P是∠α終邊上任意一點,它的坐標(x,y)都是變量,它與原點O的距離r也是變量,這三個變量的六個比值是確定的嗎?如果不是,那么對于一個確定角α,它的某一三角函數值不是就有好多個嗎?這不是說明定角的三角函數值不確定嗎? [師]××同學提出的問題很好!請大家都來考慮一下:確定的角α,它的終邊上任意一點P的坐標都是變量,它與原點的距離r也是變量,這三個變量的六個比值究竟是確定的還是變化的? (學生思考) [生甲]這六個比值都是確定的!比如銳角三角函數中,在銳角確定的Rt△中.無論你把這個三角形畫得多大或多小,三邊中兩兩的比值不變.因為這些三角形相似. [生乙]無論P在什么位置,表示縱坐標的線段,表示橫坐標的線段,以及它與原點的距離線段都組成一個直角三角形,根據相似三角形的知識.三個變量的六個比值都是確定的! [師]××同學,甲、乙兩位同學的解釋你明白了嗎? [××]明白了. [師]那好!根據相似三角形的知識,對于終邊不在坐標軸上確定的角α,上述六個比值都不會隨P點在α的終邊上的位置的改變而改變.當角α的終邊在縱軸上時,即α=kπ+(k∈Z)時,終邊上任意一點P的橫坐標x都為0,所以tanα、secα無意義;當角α的終邊在橫軸上時,即α=kπ(k∈Z)時,終邊上任意一點P的縱坐標y都為0,所以cotα、cscα無意義,除此之外,對于確定的角α,上面的六個比值都是唯一確定的實數,這就是說,正弦、余弦、正切、余切、正割、余割都是以角為自變量,以比值為函數值的函數. 注意:(1)sinα是個整體符號,不能認為是“sin”與“α”的積.其余五個符號也是這樣. (2)定義中只說怎樣的比值叫做α的什么函數,并沒有說α的終邊在什么位置(終邊在坐標軸上的除外),即函數的定義與α的終邊位置無關. (3)比值只與角的大小有關. [師]我們已經給出了任意角三角函數的定義,請同學們考慮并比較一下,我們給出的任意角的三角函數的定義與銳角三角函數的定義,有什么聯系與區(qū)別? [生甲]任意角的三角函數就包含銳角三角函數,實質上銳角三角函數的定義與任意角的三角函數的定義是一致的,銳角三角函數是任意角三角函數的一種特例. [生乙]所不同的是,銳角三角函數是以邊的比來定義的,任意角的三角函數是以坐標與距離、坐標與坐標、距離與坐標的比來定義的. (學生不可能一下子回答得準確、完整,必要時,教師應給予一定的引導、啟示). [師]兩位同學回答得很好,即正弦函數值是縱坐標比距離,余弦函數值是橫坐標比距離,(其余的由學生說出)…… [生]正切函數值是縱坐標比橫坐標,余切函數值是橫坐標比縱坐標,正割函數值是距離比橫坐標,余割函數值是距離比縱坐標. [師]為了便于記憶,我們可以利用兩種三角函數定義的一致性,將直角三角形置于平面直角坐標系的第一象限,使一銳角頂點與原點重合,一直角邊與x軸的非負半軸重合,利用我們熟悉的銳角三角函數類比記憶. [師]由于角的集合與實數集R之間是一一對應的,所以三角函數可以看成是以實數為自變量的函數.我們知道,函數有三個要素,即定義域、值域、對應法則,下面我們就來研究正弦、余弦、正切函數的定義域,值域問題待后再作研究. 對于正弦函數sinα=,因為r>0,所以恒有意義,即α取任意實數,恒有意義,也就是說sinα恒有意義,所以正弦函數的定義域是R;類似地可寫出余弦函數的定義域;對于正切函數tanα=,因為x=0時,無意義,即tanα無意義,又當且僅當角α的終邊落在縱軸上時,才有x=0,所以當α的終邊不在縱軸上時,恒有意義,即tanα恒有意義,所以正切函數的定義域是α≠kπ+(k∈Z). (由學生填寫下表) Ⅲ.例題分析 [例1]已知角α的終邊經過點P(2,-3)(如圖),求α的六個三角函數值. 解:∵x=2,y=-3 ∴r= 于是sinα= cosα= tanα==- cotα= secα= cscα= [例2]求下列各角的六個三角函數值. (1)0 (2)π (3) 解:(1)因為當α=0時,x=r,y=0,所以 sin0=0 cos0=1 tan0=0 cot0不存在 sec0=1 csc0不存在 (2)因為當α=π時,x=-r,y=0,所以 sinπ=0 cosπ=-1 tanπ=0 cotπ不存在 secπ=-1 cscπ不存在 (3)因為當α=時,x=0,y=-r,所以 sin=-1 cos=0 tan不存在 cot=0 sec不存在 csc=-1 Ⅳ.課堂練習 課本P19練習 1、2、3. Ⅴ.課時小結 (由學生自己來做.這樣能調動學生的積極思維,使學生及時回顧,加深印象) [師]本節(jié)課我們學習了哪些知識? [生甲]任意角三角函數的定義.(學生回答,教師板書) [生乙]正弦函數、余弦函數、正切函數的定義域. [生丙]三角函數的定義域是由三角函數的定義分析得到的. [生?。萑我饨侨呛瘮凳卿J角三角函數的擴展,是將銳角三角函數中邊的比變?yōu)樽鴺伺c距離、坐標與坐標、距離與坐標的比. [生戊]定義的記憶可用銳角三角函數類比記憶. …… (放開手讓學生講,盡量讓學生講,學生的積極性、主動性將得到有效調動) [師]很好!同學們下去以后,再把我們這節(jié)課所學的知識認真進行回顧歸納整理,要記住,重點是應用噢. Ⅵ.課后作業(yè) (一)課本P20習題4.3 3、4、5. (作業(yè)說明,解答4、5題時,解答過程中將三角函數值直接寫入計算過程即可). (二)1.預習內容 課本P17~P19 2.預習提綱(打出幻燈片§4.3.1 B) (1)各種三角函數值在各象限的符號怎樣易記?請尋求方法. (2)公式一的作用是什么?怎樣記憶公式? (3)若證明A是B的充要條件,那么 從AB是證明了命題的__________性; 從BA是證明了命題的__________性. 若證明A的充要條件是B,那么 從AB是證明了命題的__________性; 從BA是證明了命題的__________性. ●板書設計- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高一數學 4.3任意角的三角函數第一課時 大綱人教版必修 2019 2020 年高 數學 4.3 任意 三角函數 第一 課時 大綱 人教版 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-1982757.html