Festo 六軸工業(yè)機械手結(jié)構(gòu)設(shè)計及控制系統(tǒng)二次開發(fā)
Festo 六軸工業(yè)機械手結(jié)構(gòu)設(shè)計及控制系統(tǒng)二次開發(fā),Festo,六軸工業(yè)機械手結(jié)構(gòu)設(shè)計及控制系統(tǒng)二次開發(fā),工業(yè),機械手,結(jié)構(gòu)設(shè)計,控制系統(tǒng),二次開發(fā)
本科畢業(yè)論文(設(shè)計)開題報告
論 文 題 目: Festo 六軸工業(yè)機械手結(jié)構(gòu)設(shè)計
及控制系統(tǒng)二次開發(fā)
學(xué) 院 : 機 械 工 程 學(xué)院 專 業(yè) 、 班 級: 學(xué) 生 姓 名: ):
年 1 月 5 日填
畢業(yè)論文(設(shè)計)開題報告要求
開題報告既是規(guī)范本科生畢業(yè)論文工作的重要環(huán)節(jié),又是完成高質(zhì)量畢業(yè)論文
(設(shè)計)的有效保證。為了使這項工作規(guī)范化和制度化,特制定本要求。一、選題依據(jù)
1. 論文(設(shè)計)題目及研究領(lǐng)域;
2. 論文(設(shè)計)工作的理論意義和應(yīng)用價值;
3. 目前研究的概況和發(fā)展趨勢。二、論文(設(shè)計)研究的內(nèi)容1.重點解決的問題;
2. 擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路);
3. 本論文(設(shè)計)預(yù)期取得的成果。三、論文(設(shè)計)工作安排
1. 擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù));
2. 論文(設(shè)計)進度計劃。四、文獻查閱及文獻綜述
學(xué)生應(yīng)根據(jù)所在學(xué)院及指導(dǎo)教師的要求閱讀一定量的文獻資料,并在此基礎(chǔ)上通過分析、研究、綜合,形成文獻綜述。必要時應(yīng)在調(diào)研、實驗或?qū)嵙?xí)的基礎(chǔ)上遞交相關(guān)的報告。綜述或報告作為開題報告的一部分附在后面,要求思路清晰,文理通順, 較全面地反映出本課題的研究背景或前期工作基礎(chǔ)。
五、其他要求
1. 開題報告應(yīng)在畢業(yè)論文(設(shè)計)工作開始后的前四周內(nèi)完成;
2. 開題報告必須經(jīng)學(xué)院教學(xué)指導(dǎo)委員會審查通過;
3. 開題報告不合格或沒有做開題報告的學(xué)生,須重做或補做合格后,方能繼續(xù)論文(設(shè)計)工作,否則不允許參加答辯;
4. 開題報告通過后,原則上不允許更換論文題目或指導(dǎo)教師;
5. 開題報告的內(nèi)容,要求打印并裝訂成冊(部分專業(yè)可根據(jù)需要手寫在統(tǒng)一紙張上,但封面需按統(tǒng)一格式打印)。
一、選題依據(jù)
1. 論文(設(shè)計)題目
Festo 六軸工業(yè)機械手結(jié)構(gòu)設(shè)計及控制系統(tǒng)二次開發(fā)
2. 研究領(lǐng)域
本題目的研究領(lǐng)域?qū)儆诠I(yè)機器人。工業(yè)機器人是集機械、電子、控制、計算機、傳感器、人工智能等多學(xué)科先進技術(shù)于一體的現(xiàn)代制造業(yè)重要的自動化裝備。它涉及機械工程學(xué)、控制工程學(xué)以及人工智能工程學(xué)等等多門尖端學(xué)科。 3.論文(設(shè)計)工作的理論意義和應(yīng)用價值
本機械手設(shè)計是基于實驗室現(xiàn)有的 Festo 六軸工業(yè)機械手,具有一定的實用性。本文擬開展工業(yè)機械手機械結(jié)構(gòu)的整體設(shè)計和其控制系統(tǒng)終端開發(fā)的探究,為工業(yè)自動化提供參考。機械手在工業(yè)上應(yīng)用越來越廣泛,工業(yè) 4.0 的重要環(huán)節(jié)之一是確保加工前后序環(huán)節(jié)的自動化,六軸工業(yè)機械手高度自動化機器,在工業(yè)生產(chǎn)中能代替人做某些單調(diào)、頻繁和重復(fù)的長時間作業(yè),或是危險、惡劣環(huán)境下的作業(yè)。由于工業(yè)機器人具有一定的通用性和適應(yīng)性,能適應(yīng)多品種中、小批量的生產(chǎn),成為柔性制造單元或柔性制造系統(tǒng)的組成部分。
4.目前研究的概況和發(fā)展趨勢
隨著電子技術(shù)有了一定的發(fā)展,在產(chǎn)業(yè)領(lǐng)域出現(xiàn)了受計算機控制的可編程的數(shù)控機床,人類需要開發(fā)機械代替人手去勞動,在這一背景下,工業(yè)機器人技術(shù)的研發(fā)得到快速發(fā)展。
國外:1959 年,戴沃爾與美國發(fā)明家英格伯格聯(lián)手制造出第一臺工業(yè)機器人。1967 年,日本川崎重工公司和豐田公司分別從美國購買了工業(yè)機器人 Unimation 和Verstran 的生產(chǎn)許可證。日本從此開始了機器人的研制。20 世紀 60 年代,噴漆弧焊機器人問世并逐步發(fā)展應(yīng)用于工業(yè)。1969 年,日本早稻田大學(xué)加藤一朗實驗室研發(fā)出第一臺雙腳走路機器人。帶有視覺傳感器,能根據(jù)人的指令發(fā)現(xiàn)并抓取積木。1979 年,美國 Unimation 公司推出通用工業(yè)機器人,標志著工業(yè)機器人技術(shù)已經(jīng)成熟。1979 年,日本山梨大學(xué)牧野洋發(fā)明了平面關(guān)節(jié)型 SCARA 機器人,該型機器人在以后裝配作業(yè)中得到廣泛的應(yīng)用。目前,世界上工業(yè)機器人無論是從技術(shù)水平上還是從已裝配的數(shù)量上都日趨成熟,優(yōu)勢集中在以日、美為代表的少數(shù)幾個發(fā)達的工業(yè)化國家,已經(jīng)成為一種標準設(shè)備被工業(yè)界廣泛應(yīng)用。
國內(nèi):我國機器人技術(shù)起步較晚,從 20 世紀 80 年代初才開始。全國第一個機
器人研究示范工程 1986 年在沈陽建成。目前我國已經(jīng)基本掌握了機器人設(shè)計制造技術(shù)、控制系統(tǒng)硬件和軟件設(shè)計技術(shù)、運動學(xué)和軌道規(guī)劃技術(shù)。開發(fā)出噴漆、弧焊、點焊、裝配、搬運等機器人。20 世紀 90 年代中期,我國 6000m 以下深水作業(yè)機器人試驗成功。以后近十年中,在步行機器人、精密裝配機器人、多自由度關(guān)節(jié)機器人的研制等國際前沿領(lǐng)域,我國逐步縮小了與世界先進水平的差距。目前機械手大部分還屬于第一代,主要依靠人工控制。第二代機械手設(shè)有微型電子計算控制系統(tǒng), 具有視覺、觸覺能力,甚至聽、想的能力。研究安裝各種傳感器,把感覺到的信息反饋,使機械手具有感覺機能。雖然目前我國機器人還處于初級階段,國產(chǎn)六軸機
器人產(chǎn)量低迷,核心部件減速器等依然依賴進口,但這不影響中國市場已成為全球最大的市場。而且,我國提出的中國制造 2025 發(fā)展戰(zhàn)略,為我國國內(nèi)的機器人發(fā)展奠定了深厚的基礎(chǔ)和支持。
目前國內(nèi)機器人使用的減速機、伺服電機及驅(qū)動還是以國外供應(yīng)為主,其中日本為最大的減速機出口國。而國內(nèi)的研制減速機的上市公司以及擬上市公司有秦川發(fā)展和華恒焊接,匯川技術(shù)、英威騰、科遠股份、華中數(shù)控研制驅(qū)動器。在非上市公司中,廣州數(shù)控和南京埃斯頓除了減速機沒有批量生產(chǎn),機器人的各個環(huán)節(jié)都有涉足。
總體趨勢是從狹義的機器人概念向廣義的機器人技術(shù)概念轉(zhuǎn)移,從工業(yè)機器人產(chǎn)業(yè)向解決方案業(yè)務(wù)的機器人技術(shù)產(chǎn)業(yè)發(fā)展。機器人技術(shù)的內(nèi)涵已變?yōu)殪`活應(yīng)用機器人技術(shù)的、具有實際動作功能的智能化系統(tǒng)。機器人結(jié)構(gòu)越來越靈巧,控制系統(tǒng)愈來愈小,其智能也越來越高,并正朝著一體化方向發(fā)展。
二、論文(設(shè)計)研究的內(nèi)容
1. 重點解決的問題
(1) 提出六軸工業(yè)機械手的結(jié)構(gòu)設(shè)計方案,選用合適的三維軟件,進行六軸工業(yè)機械手三維實體設(shè)計。
(2) 六軸工業(yè)機械手抓取端蓋動作程序開發(fā)。
2. 擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路)
六軸工業(yè)機械手本身就是以我們?nèi)说氖直圩鳛閰⒄斩O(shè)計出來的,即跟人的手臂一樣,其運動機構(gòu),能實現(xiàn)轉(zhuǎn)動(擺動)、移動或復(fù)合運動作,改變被抓持物件的位置和姿勢。設(shè)計應(yīng)了解工業(yè)機器人的功能和結(jié)構(gòu),并提出六軸工業(yè)機械手結(jié)構(gòu)方案,為實現(xiàn)方案的可行化程度再進行三維實體設(shè)計。機械結(jié)構(gòu)需模塊化、可重構(gòu)化,采用關(guān)節(jié)模塊中的伺服電機、減速機、檢測系統(tǒng)三位一體,由關(guān)節(jié)模塊、連桿模塊用重組方式構(gòu)造工業(yè)機械手整機。了解工業(yè)機器人運動控制的原理,以用戶角度對工業(yè)機器人做控制分析,學(xué)習(xí) G 代碼,其控制系統(tǒng)要基于 PC 機的開放型控制器,通過嵌入式的實操手柄和電腦無線通訊的仿真上位機進行終端控制。本設(shè)計的研究重點在于控制系統(tǒng)的用戶開發(fā),基于實驗室現(xiàn)有的 Festo 六軸工業(yè)機械手,根據(jù)其抓取端蓋功能,完成整套的設(shè)計任務(wù)和具體實現(xiàn)。
3. 本論文(設(shè)計)預(yù)期取得的成果。
通過對工業(yè)機器人的相關(guān)技術(shù)的學(xué)習(xí)和研究,制定出六軸工業(yè)機械手的整體結(jié)構(gòu)的設(shè)計方案,并運用三維軟件繪制出實體模型。開發(fā)出一套工業(yè)機器人的控制程序,并在 PC 端上位機仿真軟件中模擬,最后結(jié)合實驗室六軸工業(yè)機械手及手部安裝的傳感器,實現(xiàn)機械手在空間中做區(qū)域位置判斷和任意動作,并完成夾取端蓋的具體任務(wù)。
三、論文(設(shè)計)工作安排
1. 擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù));
本研究課題為六自由度工業(yè)機械手的整體結(jié)構(gòu)設(shè)計及操作控制,其中以操作控制的開發(fā)為重點,任務(wù)是對端蓋從 A 點 B 姿態(tài)夾取放置在 C 點 D 姿態(tài)。明確任務(wù), 首先對工業(yè)機器人功能和結(jié)構(gòu)進行初步了解,查閱現(xiàn)有文獻,分析目前工業(yè)機器人企業(yè)已有的相關(guān)機械手產(chǎn)品,提出本機械手整體結(jié)構(gòu)的設(shè)計方案,其中包含相關(guān)機械設(shè)計參數(shù),通過三維實體設(shè)計直觀表達。掌握工業(yè)機器人的操作流程,學(xué)習(xí)機器人語言和仿真軟件運用,結(jié)合傳感器系統(tǒng),優(yōu)化路徑和診斷動作,設(shè)置多項程序變量,開發(fā)出本一套靈活的、智能的控制系統(tǒng)的開發(fā)程序。再結(jié)合實驗室現(xiàn)有的設(shè)備, 實踐設(shè)計的可行性。
2. 論文(設(shè)計)進度計劃
第 1 周:下達設(shè)計任務(wù),介紹設(shè)計內(nèi)容和具體要求。查閱文獻,了解課題。
第 2 周:撰寫開題報告和文獻綜述。
第 3 周:修改完善開題報告和文獻綜述。確定外文翻譯文章。
第 4 周:完成外文翻譯。開題答辯。
第 5 周:了解六軸工業(yè)機器人基本知識,包括組成、技術(shù)參數(shù)、分類及應(yīng)用。并針對某一具體六軸工業(yè)機器人進行全面詳細的剖析。為課題設(shè)計做準備。
第 6 周:對六軸工業(yè)機械手的整體結(jié)構(gòu)設(shè)計提出若干設(shè)計方案,并進行比較篩選。擬定結(jié)構(gòu)尺寸參數(shù),出整體結(jié)構(gòu)草圖,分析參數(shù)可行性。
第 7 周:對六軸工業(yè)機械手進行三維實體設(shè)計,根據(jù)初步的尺寸參數(shù),繪制所需零件和部件的 3D 圖,并在繪制過程中可完善設(shè)計參數(shù)。
第 8 周:繼續(xù)對六軸工業(yè)機械手進行三維實體設(shè)計,將繪制好的零件和部件進行裝配,并可模擬拖動。裝配過程中可繼續(xù)完善設(shè)計參數(shù)。
第 9 周:了解六軸工業(yè)機械手控制方式和流程,收集相關(guān)產(chǎn)品資料,結(jié)合機械結(jié)構(gòu),傳感系統(tǒng),控制系統(tǒng),設(shè)計出控制系統(tǒng)框圖。為機器人的控制操作做準備。第 10 周到 12 周:學(xué)習(xí) G 語言, 掌握數(shù)控仿真仿真軟件的運用,結(jié)合仿真效
果,熟悉六軸工業(yè)機械手的控制程序并編寫。PC 端測試無誤,則對現(xiàn)有平臺進行實操,完成端蓋的夾取任務(wù)。
第 13 周:整理設(shè)計資料,結(jié)合同學(xué)和老師的建議,根據(jù)要求編寫設(shè)計說明書,。
第 14 周:修改完善設(shè)計說明書,準備答辯。
四、需要閱讀的參考文獻
[1] 熊立貴,曾福全.六自由度工業(yè)機械手的開發(fā)與研究[J].煤礦機械, 2016(2):99-103.
[2] 王田苗,陶永.我國工業(yè)機器人技術(shù)現(xiàn)狀與產(chǎn)業(yè)化發(fā)展戰(zhàn)略[J].機械工程學(xué)報, 2014(5):1-13.
[3] 任志剛.工業(yè)機器人的發(fā)展現(xiàn)狀與發(fā)展趨勢[J].裝備制造技術(shù),2015(3):166-169.
[4] 計時鳴,黃希歡.工業(yè)機器人技術(shù)的發(fā)展與應(yīng)用綜述[J].機電工程,2015(1):2-4.
[5] 駱敏舟,方健,趙江海.工業(yè)機器人的技術(shù)發(fā)展及其應(yīng)用[J].機械制造與自動化,2015(2):1-4.
[6] 張坤,崔永祥.我國工業(yè)機器人發(fā)展狀況及未來發(fā)展戰(zhàn)略[J].河南科技,2014(8):129-130.
[7] 吳應(yīng)東.六自由度工業(yè)機器人結(jié)構(gòu)設(shè)計與運動仿真[J].現(xiàn)代電子技術(shù),2014(1):74-76.
[8] 黃晨華,毛桂生.上下料工業(yè)機器人結(jié)構(gòu)設(shè)計及仿真研究[J].機械設(shè)計與制造,2013(3):161-164.
[9] 熊雋.IRB1410 型機床上下料機器人設(shè)計[D].西南交通大學(xué)碩士學(xué)位論文,2016(10).
[10] 施文龍.六軸工業(yè)機器人控制系統(tǒng)的研究與實現(xiàn)[D].武漢科技大學(xué)碩士學(xué)位論文,2015(5).
[11] 高美原,秦現(xiàn)生,白晶等.基于 ROS 和 LinuxCNC 的工業(yè)機器人控制系統(tǒng)開發(fā)[J]. 機械制造,2015(10):21-24.
[12] Marko ?vaco, Bojan ?ekoranja, Bojan Jerbi?. Industrial Robotic System with Adaptive Control[J]. Procedia Computer Science, Volume 12, 2012, Pages 164-169.
[13] PAN Z,POLDEN J,LARKIN N,et al. Recent progress on programming methods for industrial robots[J]. Robotics and
Computer-IntegratedManufacturing,2012,28(2):87-94.
[14] Ali Marwan, Milan Simic, Fadi Imad. Calibration method for articulated industrial robots[J]. Procedia Computer Science, Volume 112, 2017, Pages 1601-1610.
[15] Richard Meyes, Hasan Tercan, Simon Roggendorf, Thomas Thiele, Tobias Meisen. Motion Planning for Industrial Robots using Reinforcement Learning[J]. Procedia CIRP, Volume 63, 2017, Pages 107-112.
[16] Torgny B,Present and future robot control development—An in-dustrial perspective[J].Annual Reviews in Control 2007(31):69-79.
[17] Berend Denkena, Benjamin Bergmann, Thomas Lepper. Design and optimization of a machining robot[J]. Procedia Manufacturing, Volume 14, 2017, Pages 89-96.
[18] Vladimír Tlach, Ivan Kuric, Darina Kumi?áková, Alexander Rengevi?. Possibilities of a Robotic End of Arm Tooling Control within the Software Platform ROS[J]. Procedia Engineering, Volume 192, 2017, Pages 875-880.
[19] Pan Z,Polden J,Larkin N,et al.Recent progress on programming methods for industrial robots[J].Robotics and Computer-Integrated Manufacturing,2012,28(2):87-94.
附:文獻綜述或報告
1. 引言
文獻綜述
工業(yè)機器人是集機械、電子、控制、計算機、傳感器、人工智能等多學(xué)科先進技術(shù)于一體的現(xiàn)代制造業(yè)重要的自動化裝備。工業(yè)機器人作為自動化生產(chǎn)線上的重要成員,其技術(shù)水平和應(yīng)用程度在一定程度上反映了一個國家工業(yè)自動化的水平,目前, 工業(yè)機器人主要承擔著焊接、噴涂、搬運以及堆垛等等強干擾惡劣環(huán)境,重復(fù)性并且勞動強度極大的工作,工作方式一般采取示教再現(xiàn)的方式。機器人技術(shù)是具有前瞻性、戰(zhàn)略性的高技術(shù)領(lǐng)域。
然而,國外已經(jīng)研制和生產(chǎn)了各種不同的標準組件,工業(yè)機器人技術(shù)遠遠超越我國,我國進口的工業(yè)機器人主要來自日本,因此作為制造大國,應(yīng)在工業(yè)機器人領(lǐng)域自力更生,創(chuàng)新進取。本設(shè)計是擬開展工業(yè)機器人的整體機械結(jié)構(gòu)設(shè)計和控制系統(tǒng)終端開發(fā),為工業(yè)機器人領(lǐng)域提供助力。
2. 國內(nèi)外發(fā)展現(xiàn)狀
工業(yè)機器人自動化生產(chǎn)線成套設(shè)備已成為自動化裝備的主流及未來的發(fā)展方向。各國都對工業(yè)機器人的研究和開發(fā)做大量投入,工業(yè)機器人技術(shù)得到突飛猛進。
國外概況:國外的工業(yè)機器人研究概況優(yōu)于我國。以智能化為主要方向,美國企業(yè)一方面加大對新材料的研發(fā)力度,力爭大幅降低機器人自重與負載比,一方面加快發(fā)展視覺、觸覺等人工智能技術(shù),如視覺裝配的控制和導(dǎo)航[5]。日本產(chǎn)業(yè)體系配套完備,政府大力推動應(yīng)用普及和技術(shù)突破。日本工業(yè)機器人完備的配套產(chǎn)業(yè)體系,在控制器、傳感器、減速機、伺服電機、數(shù)控系統(tǒng)等關(guān)鍵零部件方面,均具備較強的技術(shù)優(yōu)勢,呈現(xiàn)出以工業(yè)機器人產(chǎn)業(yè)優(yōu)勢帶動服務(wù)機器人產(chǎn)業(yè)發(fā)展的趨勢[3]。德國帶動傳統(tǒng)產(chǎn)業(yè)改造升級,政府資助人機交互技術(shù)及軟件開發(fā)。通過智能人機交互傳感器, 人類可借助物聯(lián)網(wǎng)對下一代工業(yè)機器人進行遠程管理,機器人還具備生產(chǎn)間隙的“網(wǎng)絡(luò)喚醒模式”,以解決使用中的高能耗問題,促進制造業(yè)的綠色升級。
國內(nèi)概況:中國面臨核心技術(shù)被發(fā)達國家控制等挑戰(zhàn),中國在機器人領(lǐng)域的部分技術(shù)已達到或接近國際先進水平。機器人涉及的技術(shù)較多,大體可分為器件技術(shù)、系統(tǒng)技術(shù)和智能技術(shù)[3]。中國在通用零部件、信息網(wǎng)絡(luò)等部分器件和系統(tǒng)技術(shù)領(lǐng)域與發(fā)達國家的差距在 10 年左右,而對智能化程度要求不高的焊接、搬運、清潔、碼垛、包裝機器人的國產(chǎn)化率較高。近年來,中國在人工智能方面的研發(fā)也有所突破,中國科學(xué)院和多所著名高校都培育出專門從事人工智能研究的團隊,機器人學(xué)習(xí)、仿生識別、數(shù)據(jù)挖掘以及模式、語言和圖像識別技術(shù)比較成熟。
3. 工業(yè)機器人發(fā)展趨勢
隨著計算機技術(shù)的不斷向智能化方向發(fā)展,機器人應(yīng)用領(lǐng)域的不斷擴展和深化以及在系統(tǒng)(FMS、CIMS)中的群體應(yīng)用,工業(yè)機器人也在不斷向智能化方向發(fā)展,以適應(yīng)“敏捷制造”,滿足多樣化、個性化的需要,并適應(yīng)多變的非結(jié)構(gòu)環(huán)境作業(yè),向非制造領(lǐng)域進軍[6]。從優(yōu)化設(shè)計、材料優(yōu)選、加工工藝、裝配技術(shù)、專用制造裝備、產(chǎn)業(yè)化能力等多方面入手,全面提升高精密減速器、高性能機器人專用伺服電機和驅(qū)動器、高速高性能控制器、傳感器、末端執(zhí)行器等五大關(guān)鍵零部件的質(zhì)量穩(wěn)定性和批量生產(chǎn)能力,突破技術(shù)壁壘,打破長期依賴進口的局面。機械結(jié)構(gòu)向模塊化、可重構(gòu)化發(fā)展。例如關(guān)節(jié)模塊中的伺服電機、減速機、檢測系統(tǒng)三位一體化;由關(guān)節(jié)模塊、連桿模塊用重組方式構(gòu)造機器人整機[2]。工業(yè)機器人控制系統(tǒng)向基于 PC 機的開放型控制器方向發(fā)展,便于標準化、網(wǎng)絡(luò)化,控制器件集成度提高,控制柜日見小巧,且采用模塊化結(jié)構(gòu),大大提高了系統(tǒng)的可控性、易操作性和可維修性。
(1) 感覺功能:感覺功能方面將實現(xiàn)多傳感器信息的融合,以檢測多變的外部環(huán)境,做出判斷和決策,其實質(zhì)類似于人的五官和身體的綜合感覺功能,包括視覺、
觸覺、力覺、滑覺、接近覺、壓覺、聽覺、味覺、臭覺、溫覺等。研究包括各類傳感信息的采集及融合處理、傳感器與驅(qū)動器一體化技術(shù)、感覺功能繼承模塊等。
(2) 控制智能化:由引導(dǎo)教向 NC,離線編程發(fā)展,進而發(fā)展到進一步應(yīng)用。隨著系統(tǒng)化、集成化生產(chǎn)的發(fā)展,基于 PC 的開放式控制系統(tǒng)將機器人控制和車間一級控制的發(fā)展方向,國外專家預(yù)測,2007 年它將占 30%。
(3) 移動功能的智能化:為解決長距離搬運作業(yè)、大作業(yè)對象、多作業(yè)對象及極限作業(yè)等問題,需開發(fā)自主移動系統(tǒng)(包括滑動、滾動、行走、爬行、跳躍、飛行等)。
(4) 系統(tǒng)應(yīng)用與集成化:支持以人為核心的生產(chǎn)系統(tǒng),實現(xiàn)生產(chǎn)系統(tǒng)中機器人群體協(xié)調(diào)功能、群智能和多機通訊協(xié)議,開發(fā)能理解人的意志的“同事機器人”。國外專家預(yù)測,2000 你后有可能 IMS 要走向 MA(R)S(多智能體系統(tǒng)),而該系統(tǒng)中的“同事機器人”(Cobot)將成為操作人員不可或缺的伙伴。圍繞著各種機器人與人共存的諸多課題,正在興起一門新學(xué)科“軟機器人學(xué)”。
(5) 安全可靠性:由于大量不確定因素的存在,要實現(xiàn)智能化的安全可靠性, 機器人必須具有對各種意外情況的應(yīng)變能力,及時采取預(yù)防措施和安全對策,包括硬件級、軟件級、應(yīng)用級和人機系統(tǒng)級的自診斷和自修復(fù)故障。
(6) 微型化:向微型化發(fā)展,開發(fā)毫米級機器人,用于微加工、醫(yī)學(xué)、宇宙和海洋開發(fā)等領(lǐng)域。就使用性和成本來看,毫米級最可行。
(7) 多傳感器信息融合與配置技術(shù):①機器人的傳感器配置和融合技術(shù)在水泥生產(chǎn)過程控制和污水處理自動控制系統(tǒng)中的應(yīng)用包括面向工藝過程的多傳感器融合 和配置技術(shù);采用智能傳感器的現(xiàn)場總線技術(shù);面向工藝要求的新型傳感器研制。② 機電一體化智能傳感器:包括具有感知、自主運動、自清污(自調(diào)整、自適應(yīng))的機電一體化傳感器研究;面向工藝要求的運動機構(gòu)設(shè)計、實現(xiàn)檢測和清污的自主運動; 調(diào)節(jié)控制系統(tǒng);機器人機構(gòu)和控制技術(shù)在傳感器設(shè)計中的應(yīng)用。
4. 工業(yè)機械手結(jié)構(gòu)
工業(yè)機械手主要由機械臂,機械手抓和伺服傳動組成。機械手抓部分是抓持的最關(guān)鍵部分,一般是由各方向轉(zhuǎn)動、伸展、縮回、升降等復(fù)合動作來實現(xiàn)機械手的功能作用,實現(xiàn)被抓持或周轉(zhuǎn)工件的姿勢、位置。機械臂各方向轉(zhuǎn)動、伸展、縮回、升降為獨立式軌跡運動,為智能機械手的多自由度。為實現(xiàn)能在一定運行軌跡范圍內(nèi)任意方位、位置的被抓取空間工件,需要有六個靈活的自由度。多自由度參數(shù)設(shè)計是機械手的關(guān)鍵,因此自由旋轉(zhuǎn)角度越多,機械手的使用范圍就越廣,適用行業(yè)性就越大, 其結(jié)構(gòu)、自由度控制難度相對也就越復(fù)雜[1]。機械結(jié)構(gòu)主要是手部分、各自由轉(zhuǎn)軸關(guān)節(jié)及擺動力臂,其中抓手是根據(jù)所抓起的物體來設(shè)計,有的需要設(shè)計抓起夾具,有的平面結(jié)構(gòu)物體則需要安裝吸從機械結(jié)構(gòu)來看,盤的結(jié)構(gòu)來實現(xiàn)等。工業(yè)機器人總體上分為串聯(lián)機器人和并聯(lián)機器人。串聯(lián)機器人的特點是一個軸的運動會改變另一個軸的坐標原點,而并聯(lián)機器人所采用的并聯(lián)機構(gòu),其一個軸運動則不會改變另一個軸的坐標原點。1978 年,Hunt 首次提出把六自由度機構(gòu)作為機器人操作器,機器人具有剛度大、結(jié)構(gòu)穩(wěn)定、承載能力大、微動精度高、運動負荷小的優(yōu)點。工業(yè)機器人的機械結(jié)構(gòu)可以具有冗余自由度,冗余度機器人是指關(guān)節(jié)自由度大于操作自由度的機器 人。多余的自由度可用來改善機器人的靈活性、運動學(xué)和動力學(xué)性能,提高避障能力。旋轉(zhuǎn)關(guān)節(jié)是機器人運動的驅(qū)動力作用點,一般由電機通過減速器驅(qū)動。減速器是機器人的關(guān)鍵部件,其成本約占機器人本體成本的 1/3,目前主要使用兩種類型的減速器: 諧波齒輪減速器和 RV 減速器[4]。
5. 工業(yè)機械手控制系統(tǒng)
機器人控制系統(tǒng)是機器人的大腦,是決定機器人功能和性能的主要因素。工業(yè)機器人控制技術(shù)的主要任務(wù)就是控制工業(yè)機器人在工作空間中的運動位置、姿態(tài)和軌
跡、操作順序及動作的時間等。具有編程簡單、軟件菜單操作、友好的人機交互界面、在線操作提示和使用方便等特點[10]。開放性模塊化的控制系統(tǒng)體系結(jié)構(gòu)采用分布式CPU 計算機結(jié)構(gòu),分為機器人控制器(RC),運動控制器(MC),光電隔離 I/O 控制板、傳感器處理板和編程示教盒等。機器人控制器(RC)和編程示教盒通過串口/CAN 總線進行通訊。機器人控制器(RC)的主計算機完成機器人的運動規(guī)劃、插補和位置伺服以及主控邏輯、數(shù)字 I/O、傳感器處理等功能,而編程示教盒完成信息的顯示和按鍵的輸入。模塊化層次化的控制器軟件系統(tǒng)建立在基于開源的實時多任務(wù)操作系統(tǒng)Linux 上, 采用分層和模塊化結(jié)構(gòu)設(shè)計,以實現(xiàn)軟件系統(tǒng)的開放性。整個控制器軟件系統(tǒng)分為三個層次:硬件驅(qū)動層、核心層和應(yīng)用層。三個層次分別面對不同的功能需求,對應(yīng)不同層次的開發(fā),系統(tǒng)中各個層次內(nèi)部由若干個功能相對對立的模塊組成,這些功能模塊相互協(xié)作共同實現(xiàn)該層次所提供的功能。機器人的故障診斷與安全維護技術(shù)通過各種信息,對機器人故障進行診斷,并進行相應(yīng)維護,是保證機器人安全性的關(guān)鍵技術(shù)。當前機器人的應(yīng)用工程由單臺機器人工作站向機器人生產(chǎn)線發(fā)展,機器人控制器的聯(lián)網(wǎng)技術(shù)變得越來越重要??刂破魃暇哂写凇F(xiàn)場總線及以太網(wǎng)的聯(lián)網(wǎng)功能。可用于機器人控制器之間和機器人控制器同上位機的通訊,便于對機器人生產(chǎn)線進行監(jiān)控、診斷和管理。
6. 工業(yè)機械手程序控制
機器人的控制系統(tǒng)不僅要能夠支持機器人編程、控制,還要支持機器人與外圍設(shè)備、傳感器的接口、和計算機的通信等,系統(tǒng)應(yīng)提供操作者編輯和運行機器人程序的方式。機器人程序編輯狀態(tài)和執(zhí)行狀態(tài)是互斥的,即程序在編輯時不可運行,在運行時不可編輯。在編輯狀態(tài)下,操作者可以進行程序文本的編輯操作如機器人指令的添加、修改、刪除和機器人位姿點的修改,也可以進行程序文件的新建、復(fù)制、粘貼等操作[11]。在程序執(zhí)行狀態(tài),機器人順序執(zhí)行機器人的每一條指令。操作者應(yīng)該還能調(diào)試發(fā)現(xiàn)并修改程序中的錯誤。例如在程序執(zhí)行過程中,某一個機器人位置的關(guān)節(jié)角超過限制,因此機器人不能執(zhí)行此條指令,這時應(yīng)該立即停止程序的執(zhí)行并在人機界面上顯示錯誤信息。操作者可切換至編輯界面修改程序中的錯誤。和計算機語言類似, 機器人語言可以編譯,即把機器人源程序轉(zhuǎn)換成機器碼或可供機器人控制器執(zhí)行的目標代碼,以便機器人控制柜能直接讀取和執(zhí)行。機器人一般只用其專用的語言進行編程而不使用計算機程序設(shè)計語言和 G 代碼,是由機器人控制的復(fù)雜性決定的。因為在機器人控制中用到各種運動學(xué)、動力學(xué)算法等,這些算法只是開發(fā)人員需要涉及的, 而用戶不需關(guān)心,可以用機器人語言將其封裝起來。而且,機器人在三維空間中工作, 需要有對空間物體的描述方法。
7. 六軸工業(yè)機械手
六軸工業(yè)機械手(抓取端蓋)的結(jié)構(gòu)設(shè)計及控制系統(tǒng)開發(fā)屬于機電一體。難度很大,本次研究基于實驗室現(xiàn)有的 Festo 六軸工業(yè)機械手抓取端蓋功能,對其工業(yè)機械手進行結(jié)構(gòu)設(shè)計,同時完成抓取端蓋動作的控制系統(tǒng)進行開發(fā),確保動作準確實現(xiàn)。其中研究重點為控制系統(tǒng)終端開發(fā)設(shè)計,并編寫開發(fā)程序。根據(jù)機械原理、機械結(jié)構(gòu)設(shè)計等的相關(guān)課程知識,設(shè)計出工業(yè)機械手的整體結(jié)構(gòu),并完成三維實體模型的繪制。然后再基于機械控制工程,數(shù)控技術(shù)和機電控制系統(tǒng)等的相關(guān)課程設(shè)計經(jīng)驗,結(jié)合人機交互,學(xué)習(xí)操作指令,編寫控制程序,運用 PC 端仿真軟件到實操等。本次解決設(shè)計過程中的難點重點問題,預(yù)期完成六軸工業(yè)機械手精確抓取端蓋。
收藏