3226 內(nèi)圓切片機設計
3226 內(nèi)圓切片機設計,切片機,設計
內(nèi)圓切片機設計目 錄目 錄 -I第 1 章 前 言 -11.1 內(nèi)圓切片機的發(fā)展和現(xiàn)狀 .11.1.1 內(nèi)圓切割技術與線切割技術分析 -21.1.2 國內(nèi)外內(nèi)圓切片機設備技術概況 -41.2 課題意義 .5第 2 章 內(nèi)圓切片機的基本原理 -72.1 內(nèi)圓切片機的原理和特點 .72.1.1 內(nèi)圓切片機的三種基本運動 -72.1.2 內(nèi)圓切片機結構及工作原理 -72.2 液壓伺服系統(tǒng)的工作原理 .82.2.1 數(shù)控液壓伺服系統(tǒng)的組成 -82.2.2 數(shù)控液壓伺服閥的結構和工作原理 -9第 3 章 主要系統(tǒng)結構設計 -123.1 擺動切割方式 .123.2 精密主軸系統(tǒng) .123.3 彈性絲杠螺母副送料系統(tǒng) .133.4 液壓傳動及其裝置 .143.5 電控系統(tǒng) .15第 4 章 組合機床主軸箱設計 -164.1 主軸箱設計的原始依據(jù) .164.2 運動參數(shù)和動力參數(shù)的確定 .164.2.1 傳動系統(tǒng)傳動比分配 -164.2.2 計算傳動裝置的運動和設計參數(shù) -164.2.3 齒輪模數(shù)的估算及其校核 -174.2.4 軸各參數(shù)估算及強度校核 -204.3 主軸箱的坐標計算 .29第 5 章 結論 -31參考文獻 -II內(nèi)圓切片機設計1第 1 章 前 言1.1 內(nèi)圓切片機的發(fā)展和現(xiàn)狀為了提高 IC 生產(chǎn)線的生產(chǎn)效率,降低生產(chǎn)成本,IC 生產(chǎn)線所需硅圓片直徑不斷增大。為了滿足硅圓片加工的需要,硅片切割設備一方面向大片徑化方向發(fā)展,另一方面向高精度、高自動化及高智能化方向發(fā)展。從世界半導體工業(yè)的發(fā)展來看,八十年代中期普遍使用 150m 圓片,該生產(chǎn)線于 1996 年發(fā)展到鼎盛時期,當時 150mm 硅片消耗量為世界圓片消耗量的50。 1990 年開始應用 200mm 圓片,該生產(chǎn)線將于 2003 年達到高峰。于此同時,300mm 圓片生產(chǎn)線已于 1995 年建成試驗性生產(chǎn)線。從世界范圍來看,目前已有相當一些 IC 制造商、設備供應商和半導體供應商完成了向 300mm 圓片工藝水平的過渡。但是,硅圓片切割設備技術的發(fā)展在 IC 生產(chǎn)線建線技術中走在時間的前列??v觀世界 IC 生產(chǎn)線的發(fā)展,發(fā)展速度之快,技術更新日新月異,給人耳目一新的感覺 1。由于集成電路制造工業(yè)的重要性,世界各國都比較重視,都積極大力發(fā)展各自盼 IC 制造工業(yè)。IC 器件的基礎性材料是半導體硅單晶材料,因此,世界各國對硅單晶材料的消耗量反映了一個國家的 IC 制造業(yè)的規(guī)模和工藝水平,同時各國硅材料生產(chǎn)及硅圓片生產(chǎn)水平也代表了一個國家 IC 工業(yè)的材料基礎的實力。由于國家的高度重視和積極扶持,我國半導體產(chǎn)業(yè)正在快速發(fā)展。2001 年在國際電子制造業(yè)的不景氣情形下,我國電子制造業(yè)是同期 GDP 的 3 倍。我國電子市場在全球市場中所占的份額由 1996 年的 23上升到 2000 年的6996 ;同時世界集成電路的平均單價為 26 美元,我國集成電路平均單價由04 美元升至 05 美元。我國 IC 工業(yè)具有發(fā)展數(shù)量的空間和具有發(fā)展技術的空間,這兩大空間,決定了我國在今后一段時期內(nèi) IC 產(chǎn)業(yè)保持快速發(fā)展。當前,我國擁有 8 家集成電路芯片制造企業(yè),其中 2 家采用 200mm 生產(chǎn)線。正在建設和計劃建設的生產(chǎn)線包括:北京信創(chuàng)(150mm)、首鋼華夏(200mm)、上海先進(200mm)、上海貝嶺(200mm)和杭州士蘭(150m)等,這些生產(chǎn)線 23 年內(nèi)可望建成投產(chǎn)。拿深圳、上海兩地為例:深圳計劃在 35 年內(nèi)建成 815 條前工藝生產(chǎn)線。上海計劃于 2005 年前,先行完成 4 條 812 英寸晶圓生產(chǎn)線,以實現(xiàn)內(nèi)圓切片機設計2年產(chǎn) 240 萬片,產(chǎn)能 11 億平方英寸的生產(chǎn)目標。以上項目的建設,為硅材料加工行業(yè)提供了廣闊的市場。以上海規(guī)劃年產(chǎn)240 萬片為例,240 萬片折合 200mlCZ 法單晶硅片 240 噸( 這一數(shù)據(jù)為日本 2001年晶圓單晶硅產(chǎn)量的十分之一,2001 年日本晶圓單晶硅產(chǎn)量為 2153 噸)。從目前國內(nèi)硅圓片加工行業(yè)來看,在我國具有相當規(guī)模的半導體材料生產(chǎn)及加工企業(yè)中,其單晶硅年產(chǎn)量徘徊在 50 噸的水平,并且其生產(chǎn)的硅圓片的數(shù)量,較多集中在 125mn 圓片的加工范圍。硅圓片的加工方法一直延用以下工藝過程:晶棒成長晶棒裁切與檢測外徑滾磨切片圓邊(倒角)表層研磨蝕刻一去疵拋光清洗檢驗包裝硅圓片切片工藝過程中多應用內(nèi)圓切割技術,該技術于二十世紀七十年代末發(fā)展成熟。隨著硅圓片直徑的增大,內(nèi)圓切割工藝中所需內(nèi)圓刀片尺寸增大,刀片張緊力也相應增大。同時刀片刃口的加厚增加了切割損耗,高速切割使硅片表面的損傷層及刀具損耗加大。這些缺點使內(nèi)圓切割技術在大片徑化方向中提高效率,降低生產(chǎn)成本受到制約。加之當時內(nèi)圓刀具制作上的困難,基于這種情況,國際上又發(fā)展了一種多線切割(后簡稱線切割) 技術工藝方法。1.1.1 內(nèi)圓切割技術與線切割技術分析200mm 以上規(guī)格硅單晶圓片切割加工可采用內(nèi)圓切割技術或線切割技術兩種切割方式。在硅圓片規(guī)?;a(chǎn)中,線切割技術作為主流加工方式,逐步取代傳統(tǒng)的內(nèi)圓切割技術方式。但在所有硅材料切片加工中,內(nèi)圓切割技術與線切割技術在實際應用中互為補充而存在。眾所周知,隨著硅圓片直徑的增大,內(nèi)圓切割技術的缺點使硅片表面的損傷層加大(約為 3040 微米 )。線切割技術優(yōu)點是效率高 (大約為內(nèi)圓切割技術的68 倍。在 8 小時左右切割過程中一次可切出 400 圓片左右)。切口小,硅棒切口損耗小(約為內(nèi)圓切割技術的 60%,這相當于內(nèi)圓切片機切割 6 片圓片而節(jié)約出 1 塊圓片),切割的硅片表面損傷層較淺 (約為 1015 微米),片子質(zhì)量人為因內(nèi)圓切片機設計3素少。但線切割技術同內(nèi)圓切割技術相比有其明顯的弱點,一是片厚平均誤差較大(約為內(nèi)圓切割技術 2 倍 )。二是切割過程中智能檢測控制不易實現(xiàn)。三是切割過程的成功率要求較高,風險大,一但斷絲而不可挽救時,直接浪費一根單晶棒。四是不能實現(xiàn)單片質(zhì)量控制,一次切割完成后,才能檢測一批圓片的切割質(zhì)量,并且圓片之間切割質(zhì)量也不相同。在這些方面,內(nèi)圓切割技術卻顯示出其優(yōu)越性來。具體表現(xiàn)在:(I)切片精度高。(2) 切片成本低,同規(guī)格級的內(nèi)圓切片機價格為線切割機價格 l3l4,線切割機還需配置專用粘料機。(3)每片都可調(diào)整。(4)小批量多規(guī)格加工時靈活的加工可調(diào)性(5) 自動、單片方式切換操作方便性。(6)低成本的輔料 (線切割機磨料及磨料液要定時更換)。(7)不同片厚所需較小的調(diào)整時間。(8) 不同棒徑所需較小的調(diào)整時間。(9) 修刀、裝刀方便。八十年代中后期人們普遍認為:隨著硅硬脆材料塊大片徑化發(fā)展,線切割技術是硅片切割的主流技術,在規(guī)?;A片切割中將取代內(nèi)圓切割技術。因此人們加大了對 200m 以上線切割機的研究,以解決其技術不足。例如 1996 年 7 月,日本日平外山公司研制成功 300mm 晶圓片線切割機(MNM444)。切片機已廣泛應用于半導體材料、石英、陶瓷、鐵氧體、鈮酸鋰等硬脆材料的切割,是半導體加工的重要工序,在國內(nèi)外許多材料加工單位普遍采用 2。切片機直接影響到硬脆材料塊的成本、質(zhì)量以及各種性能。目前,硬脆材料塊切割主要的方法有金剛石內(nèi)圓切割和線切割但是作為成熟工藝技術的內(nèi)圓切割技術在大直徑化發(fā)展方向上并沒有失掉其有利的地位,并隨著 IC 器件大片徑化發(fā)展同時其技術不斷創(chuàng)新。1998 年 1 月,日本旭日金剛石工業(yè)公司推出 T-SM-300 內(nèi)圓切片機,標志著內(nèi)圓切割技術又上了一個新的臺階 ??上驳氖?,這種設備在刀片直徑增大情況下,仍采用較小的刀口厚度(038mm)。從相對意義而言,這種較小的刀口厚度降低了刀口硅材料消耗。并且,該內(nèi)圓切片機設計制造采用了一系列先進技術,使刀口處寬度變化控制在 036 一 O38 枷。這與200mm 晶圓片切片加工時的刀口寬度的擺幅變化(O34038)是一樣的。由此可見 300mm 內(nèi)圓切割設備制造精度和工作動態(tài)精度之高。由于內(nèi)圓切片機晶棒端磨技術,切割過程中的自動修刀系統(tǒng)及刀片導向系統(tǒng)以及動態(tài)檢測和自診斷系統(tǒng)等智能化技術的應用,以單片切割質(zhì)量的控制成為優(yōu)勢條件,使內(nèi)圓切內(nèi)圓切片機設計4片機切片質(zhì)量很高(300m 片子的平均厚度變化差在 0.Olmm 以內(nèi)),為 IC 器件提供了優(yōu)良的晶圓片。同對,機械手自動單片取片也使連續(xù)切割的成片率的可靠性大大提高。根據(jù)實踐經(jīng)驗,內(nèi)圓切割技術與線切割技術在實際應用中互為補充而存在。同時我們認為:(1)在新建硅圓片加工生產(chǎn)線上,規(guī)模在年產(chǎn)量達 50 噸以上硅單晶加工生產(chǎn)線,并且圓片品種主要針對較大數(shù)量集成電路用硅圓片時,切割設備選型可定位在線切割機上,同時大規(guī)模、單一硅圓片品種(主要指圓片的厚度規(guī)格品種)的太陽能級圓片加工,切割設備選型也可定位在線切割機上。厚度規(guī)格品種的多少,直接關系到線切割機排線導輪備件的多少。該排線導輪目前國內(nèi)無法配套,國外供應商配套,價格較高。頻繁更換排線導輪增加了輔助時間,還會增加線絲的浪費(2)生產(chǎn)規(guī)模較小的生產(chǎn)單位或多品種硅圓片生產(chǎn)并具有較大規(guī)模的生產(chǎn)單位,在設備選型上,應首先考慮選用內(nèi)圓切片機。1.1.2 國內(nèi)外內(nèi)圓切片機設備技術概況在國內(nèi)引進的內(nèi)圓切片機機型中主要有瑞士 M&B 公司和日本東京精密株式會社(TOKYO)兩公司的內(nèi)圓切片機機型。這幾年隨著國外硅片生產(chǎn)公司的設備更新,在國內(nèi)引進了二手的日本 TOYO 公司生產(chǎn)的 200mm 規(guī)格的切片機,但數(shù)量不是很多。M&B 公司以臥式機型為主,TOKYO 公司以立式機型為主。在切片機主軸支撐方式上,MB 公司以空氣軸承為發(fā)展方向。TOKYO 公司以滾動軸承和空氣軸承兩種形式發(fā)展。由于以空氣軸承支撐的主軸結構的內(nèi)圓切片機,在技術和制造成本上較高,因而其價格比以滾動軸承支撐的主軸結構的內(nèi)圓切片機高出近 10 萬美元。因而,TOKYO 公司以滾動軸承支撐的主軸結構的切片機為主要發(fā)展方向,腿 B 公司的產(chǎn)品中 150mm 主流機型有 TS23、TS202(TS23 增強型)兩種。200mm 的主流機型有 TS205、TS206 兩款機型。TS205 機型主要用于 200mm 晶捧齊端頭、切樣片和切斷,TS206 機型則是集中了內(nèi)圓切片機所有現(xiàn)有技術的機型。TOKYO 公司的 TSK 系列內(nèi)圓切片機中,150mm200mm 規(guī)格機型有 S-LM-227D,s-LM-227DR,s-LM434E,s-LM-534B 機型,其產(chǎn)品檔次和技術含量隨型號的大小而增加。2002 年 3 月 26 日27 日在上海國際展覽中心舉行國際半導體設備與材料展覽暨研討會(SEMICONCHINA 2002)期間,除了 MB 公司繼續(xù)宣傳他們的內(nèi)圓內(nèi)圓切片機設計5切片機和線切割機外、TOKYO 公司沒有專項宣傳切片機機型,在他們的宣傳資料中涉及到切片機內(nèi)容也不多,這可能與 TOKYO 產(chǎn)品戰(zhàn)略調(diào)整有關,TOKYO 產(chǎn)品開始涉及到后封裝設備,研磨拋光和化學機械拋光領域了。在線切割機方面 TOKYO 公司拋棄了自行設計的多線鋸 w-SL-300-500,轉(zhuǎn)而把瑞士 HCT 公司多線鋸系列作為經(jīng)營對象。M&B 公司內(nèi)圓切片機同 2001 年北京展示的相同,僅推薦 TS23、TS206 兩種,TS23 機型是在原機型上加裝了防護罩,使操作環(huán)境變好。TS23 機型的生命期己延續(xù)了 20 年之久,該機型在國內(nèi)用戶中也反映良好。內(nèi)圓切斷機為 TS205、TS207 兩種。M&B 同 TSK 不同,該公司一直從事材料切割技術研究工作。國內(nèi)在內(nèi)圓切片機研制中僅有信息產(chǎn)業(yè)部電子第四十五研究所。其內(nèi)圓切片機機型在國內(nèi)硅片切割行業(yè)應用的范圍涵蓋了從 50mm 到 200mm 圖片的切片加工,QP-613 機型應用范圍為中 125m150mm 圓片切割加工,QP-816 機型應用于 200mm 圓片切割加工。這些機型技術層次為國外九十年代初期的水平。在以上諸多機型中以 TS206,S-LM-534B 兩種機型集中了當今內(nèi)圓切片機制造的最高技術。但是需要指出的是,這些主要技術停滯了將近 10 年。其技術特點主要體現(xiàn)在以下幾個方面:(1)精密主軸制造技術:不論是采用空氣靜壓軸承支撐的主軸技術還是以精密滾動軸承支撐的主軸技術,都是保證切片機主軸高精度、高壽命及保證切片質(zhì)量的關鍵技術。(2)精密伺服定位技術:這是保證切片機切片厚度均勻、誤差小,減少磨片時間的關鍵技術。(3)機械手技術:保證切片后可靠的取片,減少片子意外損壞的技術。(4)自動檢測技術;是刀片導向系統(tǒng)及自動修刀系統(tǒng)應用和單片質(zhì)量控制的前提條件。(5)CNC 控制技術:對機器進行控制及保證自動檢測技術應用的一軟硬件技術。(6)直流伺機服技術:保證切片質(zhì)量,提供可靠的驅(qū)動動力的技術。(7)精密滾動導軌:保證切片時片子的平行度、翹曲度、粗糙度機械導向技內(nèi)圓切片機設計6術。(8)端磨技術:提高片子表面彎曲度、翹曲度和表面粗糙度的技術。1.2 課題意義(1)利用 CNC 技術實現(xiàn)精密內(nèi)圓切片機的控制,探索出一條制造經(jīng)濟高效、精密可靠內(nèi)圓切片機的思路。(2)該設備的研制成功不僅能夠增加企業(yè)產(chǎn)品數(shù)量、提高本企業(yè)的經(jīng)濟效益,同時也解決了晶圓生產(chǎn)廠同類產(chǎn)品依賴進口的現(xiàn)狀。在設計過程中借鑒、吸收國外相同、相近產(chǎn)品的優(yōu)秀技術和成果,也為產(chǎn)品的智能化、大直徑切削設計生產(chǎn)提供了有益的借鑒。內(nèi)圓切片機設計7第 2 章 內(nèi)圓切片機的基本原理2.1 內(nèi)圓切片機的原理和特點2.1.1 內(nèi)圓切片機的三種基本運動作為內(nèi)圓切片機,要完成一個工作循環(huán)必須具備三種基本運動,即刀片高速旋轉(zhuǎn)運動 (主軸系統(tǒng)) ,被切割材料按設定片厚值步進送料運動(進料系統(tǒng) )以及 內(nèi)圓刀片柑對被切割材料作切割運動(切割進給系統(tǒng) )。另外,在切割過程 中所 切硬脆材料塊停置于刀盤內(nèi),為了將硬脆材料塊取出 ,必須將被切豺材料退出內(nèi)圓刀片刃口位置,這一退料運動是切片機的輔助運動。不同類型的切片機就是采用了不同類型的機構以及機構布局實現(xiàn)這三種基本運動和輔助運動。2.1.2 內(nèi)圓切片機結構及工作原理內(nèi)圓切片機主要由刀盤(主軸系統(tǒng)),送料箱 ,切割油缸,調(diào)晶向機構,液壓站,液壓系統(tǒng)工作臺,電控框,電控箱(操作面板)等組成。因夾持內(nèi)圓刀片的主軸軸線呈水平位置,因此該機為臥式結構。送料箱也相應呈水平位置,所以夾持被切割材料也為臥式安裝 。基于“臥式” 這一特點,被切割材料直徑增大,長度加長,這就為該機型切割大直徑硬脆材料塊提供了可能。該機工作原理:內(nèi)圓刀片夾持在刀盤間,刀盤安裝在主軸系統(tǒng)上,實現(xiàn)內(nèi)圓刀片的高速旋轉(zhuǎn)。送料箱夾持硬脆材料塊,由步進電機帶動絲杠螺母副按預置量進行步進送料,送料箱安裝在具有三維調(diào)晶向機構上,實現(xiàn)硬脆材料塊晶向調(diào)節(jié)切割功能。調(diào)晶向機構安裝在工作臺上,工作臺相對于主軸軸線方向向前,后退 動作,實現(xiàn)硬脆材料塊相對于內(nèi)圓刀片刃口進料、退料輔助運動,可以很方便將 已切成的一疊硬脆材料塊從刀盤內(nèi)取出。主軸系統(tǒng)安裝在擺動支架上,擺動支架在切割油缸驅(qū)動下作往復上下運動,實現(xiàn)內(nèi)圓刀片相對于硬脆材料塊的切割運動。這樣,一方面內(nèi)圓刀片高速旋轉(zhuǎn),一方面內(nèi)圓刀片隨擺動架作擺動切割 ,即完成一個 切片循環(huán),這就是“擺動切割”方式 。其主要技術指標:1、最大加工尺寸: 60*80mm; 2、切割速度:530mm/min ; 3、切割片厚:0.30mm; 內(nèi)圓切片機設計84、橫向/ 縱向行程: 110/100mm; 5、主軸電機:2800r/min;6、主軸轉(zhuǎn)速:4000 r/min;7、切片種類:100;8、片數(shù)設定范圍:200pcs9、液壓系統(tǒng)壓力:1.2MPa2.2 液壓伺服系統(tǒng)的工作原理國內(nèi)在液壓的精密控制領域通常采用傳統(tǒng)的電液伺服控制系統(tǒng),但由于其結構復雜、傳動環(huán)節(jié)多而不能由電脈沖信號直接控制。對于現(xiàn)代液壓伺服控制需考慮:環(huán)境和任務復雜,普遍存在較大程度的參數(shù)變化和外負載干擾;非線性的影響,特別是閥控動力機構流量非線性的影響;有高的頻寬要求及靜動態(tài)精度的要求,須優(yōu)化系統(tǒng)的性能;微機控制與數(shù)字化及離散化帶來的問題;如何通過“軟件伺服”達到簡化系統(tǒng)及部件的結構 3。因此發(fā)達國家已應用數(shù)字控制,即數(shù)控液壓伺服系統(tǒng)來取代電液伺服控制系統(tǒng),經(jīng)過幾年的努力,設計并研制成功自己的數(shù)控液壓伺服系統(tǒng),它超越了傳統(tǒng)的電液伺服控制系統(tǒng),大大提高控制精度。本文僅就該系統(tǒng)作簡要介紹。2.2.1 數(shù)控液壓伺服系統(tǒng)的組成系統(tǒng)由數(shù)控裝置、數(shù)控伺服閥、數(shù)控液壓缸或液馬達、液壓泵站 4 大部分組成。系統(tǒng)框圖如圖 1 所示。圖 2.1 數(shù)控液壓伺服系統(tǒng)的組成(1)數(shù)控裝置:包括控制器、驅(qū)動器和步進電機。之所以要采用步進電機,是由于計算機技術的飛速發(fā)展,使步進電機的性能在快速性和可靠性方面能夠滿足數(shù)控液壓系統(tǒng)的要求,而其價格低廉,又由于數(shù)控液壓系統(tǒng)結構的改進,所需步進內(nèi)圓切片機設計9電機功率較小,不需采用寬調(diào)速伺服電機等大功率伺服電機系統(tǒng),就能大大降低成本。(2)液壓缸、液馬達和液壓泵站是液壓行業(yè)的老產(chǎn)品,只要按數(shù)控液壓伺服系統(tǒng)的要求選取精度較高的即可應用。(3)伺服控制元件是液壓伺服系統(tǒng)中最重要、最基本的組成部分,它起著信號轉(zhuǎn)換、功率放大及反饋等控制作用。所以整個數(shù)控液壓伺服系統(tǒng)的關鍵部件就是數(shù)控伺服閥,它必需將電脈沖控制的步進電機的角位移精確地轉(zhuǎn)換為液壓缸的直線位移(或液馬達的角位移)。也可以說,只要有了合格的數(shù)控伺服閥,就能獲得不同的數(shù)控液壓伺服系統(tǒng)。2.2.2 數(shù)控液壓伺服閥的結構和工作原理1、數(shù)控液壓伺服閥的結構數(shù)控液壓伺服閥的結構如圖 2.2 所示,數(shù)控液壓缸的結構如圖 2.3 所示。1-步進電機2-法蘭3-螺釘4-閥體5-聯(lián)軸節(jié) 6-限動蓋7-定為套8-芯軸9-閥桿10-閥套 11-擋墊12-隔墊13-軸承14-密封圈15-螺蓋16-反饋螺母P-壓力油孔O-回油孔圖 2.2數(shù)控液壓伺服閥結構內(nèi)圓切片機設計101-步進電機2-法蘭3-螺釘4-閥體5-聯(lián)軸節(jié)6-限動蓋7-定位套8-芯軸9-閥桿10-閥套11-擋墊12-隔墊13-軸承14-密封圈15-螺蓋16-反饋螺母17-鎖緊螺母18-活塞 19-反饋螺桿副20-油管21-油缸體22-接頭23-支撐蓋24-活塞桿a、b-進、回油孔25-錐銷圖 2.3數(shù)控液壓缸2、工作原理(1) 、數(shù)控液壓伺服閥和液壓缸匹配工作原理如圖 2.2 和圖 2.3 所示,步進電機 1 通過法蘭 2 用螺釘 3 與閥體 4 聯(lián)接,電機軸通過聯(lián)軸節(jié) 5 與芯軸 8 聯(lián)接,閥桿 9 被定位套 7 固定在芯軸 8 上,閥桿可隨芯軸在閥套 10 中軸向移動,閥套被限動蓋 6 固定在閥體 4 中,壓力油口 P、回油口 O 分別與閥體上相應的油道相通,閥體 4 的左端有 2 只球軸承 13 被檔墊 11 和隔墊 12 定位,用螺蓋 15 固定在閥體中,反饋螺母 16 被兩只球軸承固定;芯軸 8 的左端加工有外螺紋,擰入反饋螺母的內(nèi)螺紋中。當有電脈沖輸入,步進電機產(chǎn)生角位移,帶動芯軸角位移,由于反饋螺母被2 只球軸承固定,不能軸向移動,螺母與活塞桿中的反饋螺桿剛性連接,在活塞桿靜止的條件下也不能轉(zhuǎn)動,迫使芯軸產(chǎn)生直線位移,帶動閥桿產(chǎn)生軸向位移,打開閥的進、回油通道,壓力油經(jīng)閥套開口處進入液壓缸,油壓推動活塞作直線位移,由于活塞桿固定在機床導軌上不能轉(zhuǎn)動,迫使活塞桿中的反饋螺桿作旋轉(zhuǎn)運動,帶動伺服閥的反饋螺母旋轉(zhuǎn),旋轉(zhuǎn)方向與芯軸方向相同,使芯軸巡回原位,當芯軸退回到 O 位時,閥桿關閉了進、回油口,油缸停止運動,活塞桿運動的方向、速度和距離由計算機程序控制。數(shù)控伺服液壓缸完成了一次脈沖動作。內(nèi)圓切片機設計11(2) 、數(shù)控伺服閥和液馬達匹配工作原理如圖 2.4 所示,液馬達的旋轉(zhuǎn)軸用鍵 26 與閥的反饋螺母 16 聯(lián)接,液馬達的進、回油接頭與閥的相應接頭聯(lián)接,當有電脈沖輸入時,步進電機按指令方向旋轉(zhuǎn),由于反饋螺母 16 不能軸向移動,芯軸 8 放置產(chǎn)生軸向位移量,帶動閥桿 9 軸向移動,打開液馬達的進、回油通道,油壓使旋轉(zhuǎn)軸 27 旋轉(zhuǎn)帶動反饋螺母 16 同向旋轉(zhuǎn),由于反饋螺母 16 不能軸向位移,使芯軸 8 產(chǎn)生軸向位移,當移動量達到一定時,閥桿關閉進、回油通道,液馬達停止轉(zhuǎn)動,完成一次脈沖動作,其轉(zhuǎn)動的方向、速度和角位移由計算機程序控制。1-步進電機2-法蘭3-螺釘4-閥體5-聯(lián)軸節(jié) 6-限動蓋7-定位套8-芯軸9-閥桿10-閥套 11-擋墊12-隔墊13-軸承14-密封圈15-螺蓋16-反饋螺母26-鍵27-旋轉(zhuǎn)軸28-油管接頭29-液馬達殼體30-安裝孔a、b-進、回油孔圖 4數(shù)控伺服閥和液馬達匹配內(nèi)圓切片機設計12第 3 章 主要系統(tǒng)結構設計3.1 擺動切割方式 在內(nèi)圓切片機系列中,完成切割運動一般多采甩直線導軌的形式來完成這一功能。本設計內(nèi)圓切片機采用擺動切割方式其原理見圖 3.1。主軸系統(tǒng)安裝在擺 動臂上,在切割油缸驅(qū)動下,繞中心軸上下擺動,同時刀盤夾掙內(nèi)圓刀片高速旋 轉(zhuǎn),來完成切割、返回的工作循環(huán)。采用擺動切割方式 ,省去了直線導軌機構,其上下擺動的直線性精度 , 由中心軸一對圓錐滾子軸承裝配精度保證。同直線導軌機構相比,它制造簡單,精 度容易保證,精度保持性長。圖 3.1 擺動切割原理3.2 精密主軸系統(tǒng)決定內(nèi)圓切片機切片質(zhì)量的另一主要因素是主軸系統(tǒng)。在對半導體單晶體 進行切割時,內(nèi)圓刀片內(nèi)刃口線速度一般要求在 178ms 左右 ,切割速度一般為 40mmmin 左右。因此主軸轉(zhuǎn)速按所夾持內(nèi)圓刀片規(guī)格不同而不同,本設內(nèi)圓切片機設計13計切片機設計主軸最高轉(zhuǎn)速為 2500rpm。圖 3.2 主軸系統(tǒng)結構因夾持內(nèi)圓刀的刀盤體積較大,夾持外徑 422 內(nèi)圓刀片的刀盤重量為57:5kg,而且為了保證已切硬脆材料塊在內(nèi)圓刀片刃口另一面 (刀盤內(nèi))容料長度,主軸系統(tǒng)的懸伸量較大,懸伸量與主軸平均直徑之比為 2.5。同時,考慮到主軸旋轉(zhuǎn)精度,主軸剛度,主軸高速旋轉(zhuǎn)抗震性以及主軸壽命等諸多因素,我設計了圖 3.2 所示的主軸結構。這種結構類同于內(nèi)圓磨床磨具主軸結構,通過適當加太主軸軸徑,增大軸承支承跨度等辦法,使主軸滿足使用要求 。3.3 彈性絲杠螺母副送料系統(tǒng)本設計的內(nèi)圓切片機進科精度設計為5m,圖 3.4 為送料系統(tǒng)的原理和結構。本機采用傳動比 i 為 l2.5 齒輪減速傳遞至絲杠螺母副實現(xiàn)步進送料。圖 3.4 所示傳動系統(tǒng)為開環(huán)控制。為了達到最終送料精度,一方面提高整個傳動系統(tǒng)精度外,另一方面采用了獨特的彈性絲杠螺母機構。該機構中,螺母沿軸線方向類似于彈性夾頭形式對稱開二條彈性槽,使螺母圓柱體呈整體不可分離 的四瓣體,這樣,因絲杠裝配或直線導軌導向精度誤差造成的絲杠與螺母不同軸而產(chǎn)生內(nèi)力,由螺母的彈性體而減小或消除,因而保證了絲杠螺母傳動精度這一送料系統(tǒng)的采用,保證了切片過程中硬脆材料塊厚度一致性要求。內(nèi)圓切片機設計14圖 3.2 送料系統(tǒng)3.4 液壓傳動及其裝置本設計內(nèi)圓切片機切割運動及工作臺進退運動由液壓系統(tǒng)驅(qū)動,圖 3.5 為該機液壓系統(tǒng)圖。圖 3.5 液壓系統(tǒng)圖在該系統(tǒng)中,貯能器用來吸收,減小液壓泵打入高壓液的脈動以及緩和電液換向閥(14)換向時沖擊力,為切割油缸均勻驅(qū)動奠定基礎,保證硬脆材料塊切割表面粗糙度的質(zhì)量要求。切割運動循環(huán)由電液換向閣控制,目的是通過電內(nèi)圓切片機設計15液換向閥換向延時性來減小退刀過程中沖擊,增強了切割過程中的平穩(wěn)性。工作臺油缸采用進油路調(diào)速方式。切割油缸采用回油路調(diào)速方式,以增強切割過程中調(diào)速平穩(wěn)性,同時采用精密 2FRM5 型調(diào)速閥(17)進行大范圍穩(wěn)定調(diào)速二位二通電磁閥(16)用于防止停機后刀盤西自身重量下沉的可能。背壓閥(12)在整個系統(tǒng)中產(chǎn)生背壓,增強系統(tǒng)工作平穩(wěn)性。整個系統(tǒng)工作動作見表 1。表 1 系統(tǒng)動作一覽表1DT 2DT 3DT 4DT 5DT工作臺快退 + - - - -工作臺工進 - + - - -切割快退 - + + - -切割工進 - + - + +3.5 電控系統(tǒng)本設計內(nèi)圓切片機是以 MCS-51 系列中 8031 為中央處理機作為控制主單元 的控制系統(tǒng),以此控制系統(tǒng)完成主軸轉(zhuǎn)速測速顯示,切割速度測速顯示,片厚、片數(shù)撥碼預置及顯示,步進電機驅(qū)動,電磁閥動作,開關等多種功能,保證了機器工作的可靠性在該電控系統(tǒng)中,主軸轉(zhuǎn)速由霍爾元件檢測,切割速度由光柵尺 檢測,主軸轉(zhuǎn)速,切割速度在操作面板上顯示 。片厚片數(shù)預置 ,在操作面板上通過撥碼開關完成,并在自動循環(huán)過程中自動累計顯示一個循環(huán)過程中所切硬脆材料塊數(shù)量以及該機工作臺所切硬脆材料塊總數(shù)。為了使機器能正常工作,本機設有冷卻、刀片變形、水壓、油壓差四種故障診斷顯示為用戶排除故障,保證切片質(zhì)量提供方便。這種集操作、檢測、診斷、顯示為一體的電控系統(tǒng)為整機使用帶來很大優(yōu)越性。此外本設計的切片機首次應用了刀片變形跟蹤惻試系統(tǒng)。在該系統(tǒng)中,由電渦流電磁傳感器對高速旋轉(zhuǎn)片進行動態(tài)撿測,經(jīng)專用電控裝置控制顯示刀片切割過程中的微變形,將刀片變形控制在預定范圍由,同時具有打印變形數(shù)據(jù)功能。這一裝置的采用為用戶方便使用,提高硬脆材料塊切割成品率,提高刀片壽命,降低生產(chǎn)成本都是非常有益的。內(nèi)圓切片機設計16第 4 章 組合機床主軸箱設計4.1 主軸箱設計的原始依據(jù)主軸箱設計的原始依據(jù)圖,是根據(jù)三圖一卡整理編繪出來的,其內(nèi)容包括主軸箱設計的原始要求和已知條件在編輯此圖時從三圖一卡中一已之1)主軸箱輪廓尺寸 500 500mm。2)工件位置尺寸及連桿大小頭中心位置尺寸。3)工件與主軸箱位置尺寸。根據(jù)這些數(shù)據(jù)可編制出主軸箱設計原始依據(jù)圖。4.2 運動參數(shù)和動力參數(shù)的確定4.2.1 傳動系統(tǒng)傳動比分配本機床主軸箱采用三級傳動: 傳動比為 3.765根據(jù)所提供數(shù)據(jù)估算各對齒輪齒輪數(shù)及傳動比:第一對: =22 =32 其傳動比 : i=1.45 0Z1Z第二對: =26 =38 其傳動比 : i=1.4623第三對: =32 =57 其傳動比 : i=1.78 45按任務書的要求,本機床要同時粗銑兩端面。因被加工零件兩端面所要達到的各級參數(shù)都完全相同,故設計成相互對稱的傳動系統(tǒng)。4.2.2 計算傳動裝置的運動和設計參數(shù)(1) 推算出各軸的轉(zhuǎn)速和轉(zhuǎn)矩1 各軸的轉(zhuǎn)速: 096minnr1.452ir23.78inrn2 各軸輸入功率 分別為齒輪傳動效率1、10.9720.9583PXKW2.5.1361097487內(nèi)圓切片機設計174.8709.4.5PXKW3 各軸輸入轉(zhuǎn)矩05.6.71T1.7409834X23.0.9KW0.71258TNM4.2.3 齒輪模數(shù)的估算及其校核(1) 估算 齒輪彎曲疲勞的估算jwzNm32齒面點蝕的估算Aj370其中 為大齒輪的計算轉(zhuǎn)速,A 為齒輪的中心距,由中心距 A 及齒數(shù)jnZ1、Z2 求其摸數(shù)12()jmmZ根據(jù)估算所得 和 中較大的值選取相近的標準摸數(shù)對于第一對齒輪:wj第二對齒輪:mm25.639.52131 xZN=2.76mmmAj)(2取摸數(shù) m 為 3第二對齒輪:=2.4mmjwzN32mm6.2451.70j取摸數(shù) m 為 3第三對齒輪: 7.2587.23xw40j取摸數(shù) m 為 3內(nèi)圓切片機設計18(2) 齒輪模數(shù)計算及強度校核1 選定齒輪類型、精度、材料及齒數(shù)1) 按照所示的傳動方案選用直齒圓拄齒輪傳動2) 組合機床為一般工作機器,速度不高,故選用 7 級精度3) 材料選擇:選用小齒輪材料 40 ,硬度為 280HBS,大齒Cr輪材料為 45 號鋼硬度為 240HBS,二者材料硬度為 40HBS4) 選小齒輪齒數(shù) Z1=22 大齒輪齒數(shù) Z2=322 按齒面接觸強度設計由設計計算公式機械設計第七版進行試算,所涉及的公式到機械設計的第七版得。1 確定公式內(nèi)的各計算數(shù)值1) 試選擇載荷系數(shù) 3.1Kt2 ) 計算小齒輪傳遞的轉(zhuǎn)矩MNnPTm.54709503 ) 由表中可得選取齒寬系數(shù)為 14) 由表中可查材料彈性系數(shù) 2/18.aEpZ5) 由圖可知 按齒輪面硬度查得小齒輪的接觸疲勞強度極限大齒輪的接觸疲勞強度極限;60limaMPH ;50lim6aPH6 )計算應力循環(huán)次數(shù)99211026.3/047. 10947.)38(6 NjLn7 )由圖可知 查得接觸疲勞壽命系數(shù) 5.,.21HNHNK8) 計算接觸疲勞強度許用應力取失效概率為 1% 安全系數(shù) S=1 則有: aH mpSKN54069.0lim6111 a.2.li222(3) 計算(1) 試算小齒輪分度圓直徑 ,代入 中較小的值:1tdH內(nèi)圓切片機設計1931.547102.45189.2 58.26.451.2.txxxd mxx 由于 大于等于 58.286 毫米,故取 為 66 毫米。tdtd(2) 計算摸數(shù)3261dm(4) 按齒輪彎曲強度設計由公式得彎曲強度的設計公式為: 3112FdFazYKTm1 由圖則有小齒輪的彎曲強度疲勞強度極限 ,大齒輪的MPE50彎曲疲勞強度極限 MPaE38022 由表上則有彎曲的疲勞強度壽命系數(shù) 8.,.21FNFN3 計算彎曲疲勞許用應力:取彎曲疲勞安全系數(shù) S=1.4,由書中的公式有:PaXF57.304.158.01M86224 計算載荷系數(shù) K K=1X1.12X1.2X1.35=1.814 5 查取齒形系數(shù) 26.,65.1sasaY6 查取應力系數(shù) 7418FF7 計算大,小齒輪的 并加以比較:aXs01379.5.3.6211 YFFa6482722s大齒輪的計算值大。(2) 設計計算mxxxm89.120164.47.581.3 對比計算結果,取 ,則有:35.201iz這樣設計出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強度,并做到結構緊湊,避免浪費。此時關于幾何計算內(nèi)圓切片機設計201、計算分度圓的直徑:6320xmzd 96321xmzd2、計算中心距: a8)(103、計算齒輪寬度:通過查閱組合機床手冊得 24,10b(3) 第二對齒輪的計算,經(jīng)校核有:46.1,2,32izmmxd7823b4,2(4)第三對齒輪的計算,經(jīng)校核有:78.1,5,32,343izmmxd9635b2444.2.4 軸各參數(shù)估算及強度校核一、傳動軸的估算(1)估算軸的最小直徑,按扭轉(zhuǎn)強度條件計算,先按照下列初步估算的最小直徑,選取軸的材料 45 號鋼,調(diào)質(zhì)處理。 2.095TTxdNPW 式中: 扭轉(zhuǎn)切應力,單位兆帕TT 軸所受的扭矩軸的抗扭截面系數(shù)n 軸的轉(zhuǎn)速p軸的傳遞的功率d 計算截面處軸的直徑許用扭轉(zhuǎn)切應力T由以上公式可得軸的直徑; mxxnpid 13.8960452.9502.0950333 內(nèi)圓切片機設計21取 md30inmnPiT17.20.9513取 inpid49.0233取 m5inmniT63.22.933 取 d40min二、主軸的強度校核對傳遞動力軸滿足強度條件是最基本的要求。通過結構設計初步確定出軸的尺寸后,根據(jù)受載情況進行軸的強度校核計算。首先作出軸的計算圖。如果軸上零件的位置已知,即已知外載荷及支反力的作用位置。將齒輪帶輪等級裝配寬度的分布簡化為集中力,并視為作用在輪轂寬度的中點上;略去軸和軸上的自重;略去軸上產(chǎn)生的拉壓應力;把軸看成鉸鏈支承,支反力作用在軸承上,其作用點的位置可用如下圖所示確定。則將雙支點軸當作受集中力的簡支梁進行計算,然后繪制彎矩圖和扭矩圖,并進行軸的強度校核。1、 求出輸出軸的功率 ,轉(zhuǎn)速 和轉(zhuǎn)矩 。Vp3n3T設 , 分別為齒輪傳動軸承的傳動效率2=0.97, =0.98 則1= =5.5 =4.54 KWVp電 1230.975.8又 = / = =255 r/m3n0i總 6.于是=9550000 =172580 n mm3T452A2、 求作用在齒輪上的力因已知低速大齒輪的分度圓直徑= =3 57=171mm3dm5z而: = = =2018.5 NtF32T1780內(nèi)圓切片機設計22= =2018.5 =734.7 NFtantan20式中:主軸上大齒輪傳遞的轉(zhuǎn)矩,單位為 N mm3T 主軸上大齒輪的節(jié)圓直徑,對標準齒輪即為分度圓直徑。單位d為 mm嚙合角。對標準齒輪 =203、 求軸上的載荷首先根據(jù)軸的結構圖(見主軸箱圖)作出計算簡圖。在確定軸承的支點位置時,應從手冊中查得 a 值。對于 7216E 型圓錐滾子軸承,由手冊中查得a=22。對于 7220E 型圓錐滾子軸承,由手冊中查得 a=29mm。因此,作為簡支梁的軸的軸承跨距 + =119.5mm+93.45mm=212.94mm。1l2內(nèi)圓切片機設計23圓 錐 滾 子 軸承 圓 錐 滾 子 軸 承圖 3-1 主軸載荷分析圖從軸的結構圖以及彎矩和扭矩圖中可以看出截面 B 是軸的危險截面?,F(xiàn)將計算截面 B 處的 、 及 M 的值HV確定支座處的約束力(水平 H)由 =0 和 =0 可求得:BF+ = 1NHF2t- ( + )=0 tL21內(nèi)圓切片機設計24其中 =119.5mm1L=93.45 mm2=2018.5 NtF因此:=885.8 N1NH=1132.7 N2又由 =885.8 N, =119.5mm 可求得:1NHF1L= =885.8 119.5=105853.1 N mmM1確定支座處垂直約束力由 =0 和 =0 可求得BF+ = 1NVF2r- ( + )=0 rL21其中 =119.5mm1=93.45mm2=734.7 NrF因此 =322.4 N1V=412.3 N2由上式可求得: = =322.4 119.5=38526.5 N mmVM1FL=172580 N mm3T由可求得 M= = =112646.3 N mm2HV220583.16.84、 按彎扭合成應力校核軸的強度進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面)強度。由式 = =ca2MT( ) ( )W2( ) 1內(nèi)圓切片機設計25式中: 軸的計算應力。單位為 MpacaM軸所受的彎矩。單位為 N mmT軸所受的扭矩。單位為 N mmW軸的抗彎截面系數(shù)。單位為 3m對于圓環(huán)形截面,W=32d4( 1-)0.13( )其中 = = =0.311d340查表得 =0.6因此: = =ca2M( T)W234164.0(10.)2( 758)= Mpa57.89=1.16 Mpa前已選定軸的材料為 45 號鋼,調(diào)質(zhì)處理。由表查得=60 Mpa1因此 ,故安全滿足要求。ca1三、軸的強度校核1、 求軸上的功率 ,轉(zhuǎn)速 和轉(zhuǎn)矩3P2n2T設 , 分別為齒輪傳動,軸承傳動的效率12=0.97 , =0.98= =5.39 =4.87 kw3P231電 230.97.8又 = = =454 r/min2n01i6.45于是: =9550000 =101990 N mm3229PTn4.8752、 求作用在齒輪上的力因已知低速大齒輪的分度圓直徑為內(nèi)圓切片機設計26mm23814dmz而 N12097.3TFt= =1789.3 tan =651.25 N1tan2式中: 軸上大齒輪傳遞的轉(zhuǎn)矩,單位為 N mm2T 軸上大齒輪的節(jié)度圓直徑,對標準齒輪即為分度圓直徑。單位d為 mm為嚙合角。對標準齒輪 = 。20對于軸上小齒輪受力因軸上小齒輪與軸上大齒輪相嚙合,由主軸校核已知 =2018.5 N,tF主=734.7 N。F主由牛頓第三定律可知=2018.5 N, =734.7 N2t 2rF3、 求軸的載荷首先根據(jù)軸的結構圖(見主軸箱裝配圖)作出軸的計算簡圖(如下圖所示)。對于 1000806、1000807 型深溝球軸承,起其作用支點在其軸承中心。因此作為簡支梁的軸的支承跨矩,+ + =85+48.4+111.4=244.8mm1L23內(nèi)圓切片機設計273-2 軸的載荷分析圖從軸的結構圖以及彎矩和扭矩圖中可以看出截面心是軸的危險截面?,F(xiàn)將計算截面 C 處 , , 及 M 的值。HV內(nèi)圓切片機設計28 確定支座處水平的約束力由 =0 和 =0 可求得:AMF+ = - 1NHF2t1t( )= + ( ) 2tLtL2NH123L從而推得:=292.1 N1NH= 521.3 N2F由 , , , 可求得:1NH1t2tF=-24828.5 N mmBM=127262 N mm2=199726.48 N mmC=-69541.42 N mm1M=127614.24 N mm由上可推出: =199726.48maxM 確定支座處垂直方向約束力由 =0, =0 可求得AF+ = - 1NV2r1( )= + ( ) 2rLrL2NV123L將公式 =734.7 N, =651.25 N 代入 rF1r因此, =90.8 N1NV=174.2 N2由 , , , 已知可求得:1NVF1r2rF=-771.8 N mmBM=47638.25N mm2內(nèi)圓切片機設計29=7476 N mm2CM=-23244.96 N mm1M=42656.4 N mm由上可推出: =74764 N mmmax由 可求得= = =213261 N mmM總 22axaxHv221976.48兩齒輪之間 =101990 N mm2T4、按彎扭和成應力校核軸的強度進行校核時通常只校核軸上承受最大的彎矩和扭矩的截面(即危險截面C)的強度由式 = =ca2MT( ) ( )W2( ) 1對于圓柱形截面 W=0.1 3d查手冊得 =0.6= = =34.7mpsca2T( ) ( ) 22316(0.19)4前已選定軸的材料為 45 號鋼,經(jīng)過調(diào)質(zhì)量處理。查手冊得 =60mpa1因此 ,故安全滿足要求。ca1同理可得軸,軸校核安全。4.3 主軸箱的坐標計算坐標計算是機床主軸箱設計中的一個重要問題。坐標計算就是根據(jù)已知的驅(qū)動軸和主軸的位置及傳動關系。計算中間傳動軸的坐標,以便在繪制主軸零件加工圖時,將各孔的坐標尺寸完整地出來。并用已繪制的坐標檢查圖作為傳動設計的全面檢查。1、 加工基準坐標架的選擇及確定各主軸的坐標為了便于主軸箱的加工,設計時必須基準坐標架。通常采用直角坐標。用xoy 表示。它的選擇是根據(jù)主軸箱的安置情況和加工所用設備條件而定。針對本設計的組合機床,采用以下的方法確定主軸及驅(qū)動軸坐標。坐標架原點選在定位銷孔上。內(nèi)圓切片機設計30坐標架的橫架(x 軸)選在主軸箱底面,縱軸(Y 軸)通過定位銷孔(如上圖)。這是因為坐標架的 x 軸與主軸箱底面重合,則工藝基準與設計基準統(tǒng)一,可減少因基準轉(zhuǎn)換引起的加工誤差。坐標原點確定后,便可以根據(jù)主軸箱設計原始依據(jù)圖。在基準坐標架 xoy 上標出各主軸及其驅(qū)動軸的坐標。根據(jù)設計要求, 兩主軸中心BC=332.5mm,BC 與 y 軸的夾角為 ,驅(qū)動軸在 BC 的垂直平分線上,點 D1在主軸箱中心線上。則有:對于驅(qū)動軸:X= + sin + sin3XCD1A79=100+31.7+257.3=389mm= + cos + sin1Y2B1=70+163.2+50=283.2mm= + sin2X3C=163.4mm = =702Y=1003= + cos2XBC1=70+326.4=396.4由以上分析可知驅(qū)動軸,主軸,主軸的坐標分別是(389,283.2) ,(163.4 ,70 ) , (100 ,396.4 )內(nèi)圓切片機設計31第 5 章 結論此次畢業(yè)設計所設計的題目是“硬脆材料內(nèi)圓切片機設計”通過這次設計,我對內(nèi)圓切片技術的發(fā)展現(xiàn)狀有了一個全面地了解,了解了內(nèi)圓切片技術在現(xiàn)在以及以后機械工業(yè)中所起的作用,明白了內(nèi)圓切片技術的在以后工業(yè)的發(fā)展中所扮演的角色。為自己今后更好的學習數(shù)控技術指明了方向。通過這次畢業(yè)設計,使我對大學期間所學的知識,進行了融會貫通,有了一個全新的認識,對以前許多不太清楚的地方,通過問老師和查資料的方法,已經(jīng)明白了很多,知道了自己以前學習的不足,所以以后應該更加努力。此次設計,我認為最重要的就是使我明白了,無論做什么事情,要想做好,必須態(tài)度端正;要善于學習,時刻學習;做事要嚴謹、認真,細致、不怕吃苦,還要有創(chuàng)新精神。參考文獻II參考文獻1.張耀宸 主編 機械加工工藝手冊 航空工業(yè)出版社。19872.李洪主編 機械加工工藝手冊 北京出版社.1990。3.機械制造工藝設備設計手冊編寫組編 機械制造工藝及設備手冊 機械工業(yè)出版社 19924.機械制造工藝設計手冊 王紹俊 主編 哈爾濱
收藏