高考數(shù)學人教A版(理)一輪復習:第八篇 第2講 空間幾何體的表面積與體積
《高考數(shù)學人教A版(理)一輪復習:第八篇 第2講 空間幾何體的表面積與體積》由會員分享,可在線閱讀,更多相關《高考數(shù)學人教A版(理)一輪復習:第八篇 第2講 空間幾何體的表面積與體積(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第2講 空間幾何體的表面積與體積 A級 基礎演練 (時間:30分鐘 滿分:55分) 一、選擇題(每小題5分,共20分) 1.(2013·東北三校一模)一個幾何體的三視圖如圖所示,則側視圖的面積為( ). A.2+ B.1+ C.2+2 D.4+ 解析 依題意得,該幾何體的側視圖的面積等于22+×2×=4+. 答案 D 2.(2011·湖南)設右圖是某幾何體的三視圖,則該幾何體的體積為 ( ). A.π+12 B.π+18 C.9π+42 D.36π+18 解析 該幾何體是由一個球與一個長方體組成的組合體,球的直徑為3,長方體的底面是邊長為3的正方形,高為2,故所求體積為2×32+π3=π+18. 答案 B 3.一個幾何體的三視圖如圖所示,那么此幾何體的側面積(單位:cm2)為 ( ). A.48 B.64 C.80 D.120 解析 據(jù)三視圖知,該幾何體是一個正四棱錐(底面邊長為8),直觀圖如圖,PE為側面△PAB的邊AB上的高,且PE=5.∴此幾何體的側面積是S=4S△PAB=4××8×5=80(cm2). 答案 C 4.(2012·新課標全國)已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為 ( ). A. B. C. D. 解析 在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,∴SA==;同理SB=.過A點作SC的垂線交SC于D點,連接DB,因△SAC≌△SBC,故BD⊥SC,故SC⊥平面ABD,且平面ABD為等腰三角形,因∠ASC=30°,故AD=SA=,則△ABD的面積為×1× =,則三棱錐的體積為××2=. 答案 A 二、填空題(每小題5分,共10分) 5.已知S、A、B、C是球O表面上的點,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,則球O的表面積等于________. 解析 將三棱錐S-ABC補形成以SA、AB、BC為棱的長方體,其對角線SC為球O的直徑,所以2R=SC=2,R=1,∴表面積為4πR2=4π. 答案 4π 6.(2012·天津)一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為________ m3. 解析 由三視圖可知,該幾何體是組合體,上面是長、寬、高分別是6,3,1的長方體,下面是兩個半徑均為的球,其體積為6×3×1+2××π×3=18+9π(m3). 答案 18+9π 三、解答題(共25分) 7.(12分)如圖,已知某幾何體的三視圖如下(單位:cm): (1)畫出這個幾何體的直觀圖(不要求寫畫法); (2)求這個幾何體的表面積及體積. 解 (1)這個幾何體的直觀圖如圖所示. (2)這個幾何體可看成是正方體AC1及直三棱柱B1C1Q-A1D1P的組合體.由PA1=PD1=,A1D1=AD=2,可得PA1⊥PD1.故所求幾何體的表面積S=5×22+2×2×+2××()2=22+4(cm2), 體積V=23+×()2×2=10 (cm3). 8.(13分)在直三棱柱ABC-A1B1C1中,底面為直角三角形,∠ACB=90°,AC=6,BC=CC1=,P是BC1上一動點,如圖所示,求CP+PA1的最小值. 解 PA1在平面A1BC1內,PC在平面BCC1內,將其鋪平后轉化為平面上的問題解決.鋪平平面A1BC1、平面BCC1,如圖所示.計算A1B=AB1=,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形. CP+PA1≥A1C.在△AC1C中,由余弦定理,得 A1C===5, 故(CP+PA1)min=5. B級 能力突破 (時間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.(2012·哈爾濱模擬)某品牌香水瓶的三視圖如下(單位:cm),則該幾何體的表面積為 ( ). A.cm2 B.cm2 C.cm2 D.cm2 解析 該幾何體的上下為長方體,中間為圓柱. S表面積=S下長方體+S上長方體+S圓柱側-2S圓柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π××1-2×π2=94+. 答案 C 2.(2013·福州模擬)如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為 ( ). A. B. C. D. 解析 三棱錐B1-ABC1的體積等于三棱錐A-B1BC1的體積,三棱錐A-B1BC1的高為,底面積為,故其體積為××=. 答案 A 二、填空題(每小題5分,共10分) 3.(2013·江西盟校二聯(lián))已知某幾何體的直觀圖及三視圖如圖所示,三視圖的輪廓均為正方形,則該幾何體的表面積為________. 解析 借助常見的正方體模型解決.由三視圖知,該幾何體由正方體沿面AB1D1與面CB1D1截去兩個角所得,其表面由兩個等邊三角形、四個直角三角形和一個正方形組成.計算得其表面積為12+4. 答案 12+4 4.(2012·長春二模)如圖所示,正方體ABCD-A1B1C1D1的棱長為6,則以正方體ABCD-A1B1C1D1的中心為頂點,以平面AB1D1截正方體外接球所得的圓為底面的圓錐的全面積為________. 解析 設O為正方體外接球的球心,則O也是正方體的中心,O到平面AB1D1的距離是體對角線長的,即為.又球的半徑是正方體對角線長的一半,即為3,由勾股定理可知,截面圓的半徑為=2,圓錐底面面積為S1=π·(2)2=24π,圓錐的母線即為球的半徑3,圓錐的側面積為S2=π×2×3=18π.因此圓錐的全面積為S=S2+S1=18π+24π=(18+24)π. 答案 (18+24)π 三、解答題(共25分) 5.(12分)(2013·杭州模擬)如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉一周所成幾何體的表面積及體積. 解 由已知得:CE=2,DE=2,CB=5, S表面=S圓臺側+S圓臺下底+S圓錐側=π(2+5)×5+π×25+π×2×2=(60+4)π,V=V圓臺-V圓錐=(π·22+π·52+)×4-π×22×2=π. 6.(13分)如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示. (1)求證:BC⊥平面ACD; (2)求幾何體D-ABC的體積. (1)證明 在圖中,可得AC=BC=2, 從而AC2+BC2=AB2, 故AC⊥BC, 又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC?平面ABC,∴BC⊥平面ACD. (2)解 由(1)可知,BC為三棱錐B-ACD的高,BC=2,S△ACD=2, ∴VB-ACD=S△ACD·BC=×2×2=, 由等體積性可知,幾何體D-ABC的體積為. 特別提醒:教師配贈習題、課件、視頻、圖片、文檔等各種電子資源見《創(chuàng)新設計·高考總復習》光盤中內容.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數(shù)學人教A版理一輪復習:第八篇 第2講 空間幾何體的表面積與體積 高考 學人 一輪 復習 第八 空間 幾何體 表面積 體積
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-1384797.html