購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
附 錄
附錄A
The frame is the most basic test bench car, all the suspension and turned to connect components are installed in frame above. If car frame flexible is too big, can make cars can neither turned, also cannot normal control. And if the car too rigid frame structure, and would cause unnecessary vibration passed to the driver and passenger's seat cabins. Auto frame and suspension structure design is not only the vehicle noise size and the decision of the vibration amplitude strength, but also will affect the quality of the car and the normal control vehicle. Car manufacturers in their production car are used in several different frame structure. Among them, through the seventy s the most commonly used is shell and girders of fission structure.
At present it is still in large trucks, small tonnage truck and a truck on the application. In car shell and the beam structure in the fission, engine, transmission device, transmission gear and the car is through shell insulation devices in the body on the sole fixed. The frame of the internal insulation devices is artificial rubber pad to be able to stop road uneven and engine noise and vibration of the work related to the driver and passenger's cockpit. The second is the single structure of automobile frame. This kind of design so far in the modern car is the most commonly used. According to the strength of the frame monomer to points, design have light structure. In this car structure as part of the beam frame welding to be directly on the shell. The weight of the chassis increased the strength of the beam. Transmission gears and transmission device via big and soft artificial rubber insulation mat installed in the frame monomer. Insulation pad weakened the noise transmission and vibration. If the insulation pad too soft, will cause transmission gears and transmission device displacement. The displacement called soft quantity, it will affect the manipulation of car performance and control performance. If the insulation pad too hard, cannot play its isolation and reduce the role of the vibration noise. Car manufacturers well-designed insulation mat, put them in proper place device car, in order to reduce the noise, vibration, make the transmission buffer for driving car, drivers and passengers take comfort. The performance of the insulation mat with use fixed number of year changing, when the old car becomes the performance of the original also changed.
He third kind of structure is the first two kinds of structure of the main characteristics unifies in together. It in front of the car used car beam, in the short HouCang use a frame. A monomer, and short rigid part of the beam's action is insulation to enhance the car.
Car manufacturers in the car that choose low production cost and at the same time to meet with noise, vibration control performance requirements of high driving frame structure. The old large vehicles, trucks, and trucks often use shell and girders of fission structure. A new, smaller vehicles often use single structure frame.
Engine piston connecting rod group
The piston connecting rod group of piston, piston, piston pins, connecting rod, connecting rod bearings etc.
Function: the piston is the work of gas pressure to bear, and through the piston pin to connecting rod rotation, the piston driven crankshaft top or part of the combustion chamber. Working conditions: the piston in high temperature and high pressure, high speed, bad lubrication under the conditions of the job. The piston directly with high temperature, gas contact instantaneous temperatures up to 2500 K above, therefore, heat, and cooling conditions and serious is very poor, so the piston work temperature is very high, the top as high as 600 to 700 K, and the temperature distribution is not uniform; The piston top bear gas pressure to do work, especially the greatest pressure, the gasoline engine trip up to 3 ~ 5 MPa, diesel engine as high as 6 ~ 9 MPa, this makes the piston impact, and bear the role of the lateral pressure, therefore, the piston should have enough heat resistance, to try to reduce the piston, piston cooling heating strengthen heat transfer surface, suitable enlargement, make the tops of the pistons. The highest temperature drop Inside the cylinder piston at high speed (8 to 12 m/s) reciprocating motion, and speed changing constantly, which has made a big inertia force, driving the piston is much additional load. The piston in this harsh conditions, can produce deformation work and accelerated wear, still can produce additional load and thermal stress, and the chemical corrosion function by gas. In order to reduce reciprocating inertia force, must reduce the weight of the piston as much as possible. The piston is in high temperature and high pressure, high speed (piston average speed can reach 101115 m/s) under the working conditions of the poor, the lubrication, piston and cylinder wall friction between serious. To reduce the friction, the piston surface must wear-resisting.
Requirements:
1)To have enough stiffness and strength, power transmission and reliable;
2)Thermal conductivity, resistance to high pressure, high temperature resistant, wear resistance;
3) Quality, light weight, small to minimize reciprocating inertia force.
Aluminum alloy material basically meet the above requirements, therefore, the piston typically use the high-strength aluminum alloy, but in some low speed diesel engine USES the senior cast iron or heat resistant steel.
Suspension system
Suspension shock absorbers and control including a spring, connecting rod device. It must be able to support the body weight and enough to load. Suspension also should be able to withstand the engine and braking to it an opposite reaction. Suspension system is the most important function of the tire and road surface contact time as far as possible the long. In support of body and load, even in rough roads should be more so. The four tire tread come in contact with the car is the only part. All output power, engine to force and power system through come in contact with the pavement of the tire tread work. Whenever tires and road surface contact or car started when the car skid, control ability (power, to force, braking force) will be weakened or even lost.
Car body is supported by spring, spring can be divided into the spiral, steel plate type, twist bar type and inflatable. The spiral spring is the most widely used in modern car type. The spiral, torsion bar type and inflatable spring is need to use the connecting rod and connecting with the wheel arm in place. Leaf spring provide the horizontal and vertical vehicle control, in order to prevent the car wheel in cars, they often unnecessary displacement with truck in the van and truck.
Suspension system is along with the development of the passenger car and change and improvement. A luxury car, special vehicle, small cars and light trucks are designed completely different. Modern tire improvement continuously improve the vehicles operating performance, it is the improvement and shock absorbers, steering system and suspension control device of synchronous improvement together.
In modern car of the manipulation conditions need to tires and the road, so that safe, correct contact to control and motor vehicles. To want to maximum driving safety, to remember this four tires must in any time and the road phase contact. At the same time to consider the vehicle steering flexibility, tire wear resistance, automobile driving comfort and driving safety, in order to achieve the effective control of the car. Suspension system is divided into front suspension and after suspension.
The front suspension design has been rapid development. From relatively coarse hard shaft structure to the development of the modern light, high strength, support type independent suspension structure, and by increasing the connecting rod device and make the car's performance is improved. Suspension structure is improved with the improvement of the road, and drivers need and the improvements.
Most lead the engine, rear wheel drive car USES a simple after the dependency of the suspension. But a rear wheel drive independent suspension structure is complex, and high cost, and only used for a bus.
To lead the engine of the car front wheel drive, through the transmission device, moved to the front suspension after only used to regulate driving control and the reaction of braking. This has the simplified of independent suspension institutions, half independent suspension institutions and independent suspension after the application, the latter a large institutions used in the design of the structure of new vehicles.
附錄B
車架是汽車最基本的臺架,所有的懸架和轉向連接部件都安裝在車架上面。如果汽車車架柔性過大,會使汽車既無法轉向,也無法進行正常操縱。而如果汽車車架結構剛性過大,又會引起不必要的震動傳遞給駕駛員和乘客的座艙室。汽車車架和懸架的結構設計不僅決定了汽車噪聲大小和震動的幅度強度,而且也將影響到汽車的質量和車輛的正常操縱。
汽車制造廠商們在他們生產(chǎn)的汽車上都使用了幾種不同的車架結構。其中,整個七十年代最常使用的是殼體和大梁的分體結構。目前它仍然在大型貨車、小噸位貨車和卡車上應用著。在汽車殼體和大梁的分體結構里,發(fā)動機、傳動裝置、傳動齒輪和車殼都是通過絕緣裝置固定在車身大梁上。車架內部的絕緣裝置是人造橡膠緩沖墊,能夠阻止道路不平和發(fā)動機工作引起的噪音和震動傳到駕駛員和乘客的座艙里。
第二種是汽車車架的單體結構。這種設計到目前為止在現(xiàn)代汽車上是最常用。單體車架按所需的強度來分,設計有輕型結構。在這種汽車結構中大梁作為車架的一部分被直接焊接到殼體上。底盤的重量增加了大梁的強度。傳動齒輪和傳動裝置經(jīng)由大而軟的人造橡膠絕緣墊安裝在單體車架上。絕緣墊減弱了噪聲的傳動和震動。若絕緣墊太軟,將會引起傳動齒輪和傳動裝置位移。這種位移稱為柔量,它會影響到汽車的操縱性能和控制性能。若絕緣墊太硬,則不能起到應有的隔絕噪音和減小震動的作用。汽車制造廠商們精心地設計絕緣墊,把它們裝置在汽車適當?shù)牡胤?,以降低噪聲,緩沖震動的傳送,使汽車便于駕駛,駕駛員和乘客乘坐舒適。絕緣墊的性能隨使用年限發(fā)生變化,當汽車變舊時原先的性能也隨之改變。
第三種結構是把前兩種結構的主要特點結合在一起。它在汽車前艙使用了短車梁,在汽車后艙使用了單體車架。單體部分剛性很大,而短的車梁增強了絕緣作用。
汽車制造廠家們在汽車上選擇那種生產(chǎn)成本低而同時又符合對噪音震動,駕駛操縱性能要求很高的車架結構。老式的大型的車輛、貨車、和卡車通常使用殼體和大梁的分體結構。較新的,較小型的車輛通常使用單體結構的車架。
發(fā)動機活塞連桿組
活塞連桿組由活塞、活塞環(huán)、活塞銷、連桿、連桿軸瓦等組成。
功用:活塞的功用是承受氣體壓力,并通過活塞銷傳給連桿驅使曲軸旋轉,活塞頂部還是燃燒室的組成部分。 工作條件:活塞在高溫、高壓、高速、潤滑不良的條件下工作?;钊苯优c高溫氣體接觸,瞬時溫度可達2500K以上,因此,受熱嚴重,而散熱條件又很差,所以活塞工作時溫度很高,頂部高達600~700K,且溫度分布很不均勻;活塞頂部承受氣體壓力很大,特別是作功行程壓力最大,汽油機高達3~5MPa,柴油機高達6~9MPa,這就使得活塞產(chǎn)生沖擊,并承受側壓力的作用,因此,活塞應有足夠的耐熱性,要盡量減小活塞的受熱面,加強活塞的冷卻,適當增大傳熱面,使活塞頂部的最高溫度下降?;钊跉飧變纫院芨叩乃俣?8~12m/s)往復運動,且速度在不斷地變化,這就產(chǎn)生了很大的慣性力,使活塞受到很大的附加載荷?;钊谶@種惡劣的條件下工作,會產(chǎn)生變形并加速磨損,還會產(chǎn)生附加載荷和熱應力,同時受到燃氣的化學腐蝕作用。 為了減小往復慣性力,必須盡可能地減輕活塞的重量?;钊窃诟邷?、高壓、高速(活塞平均速度可達101115m/s)的條件下工作的,其潤滑條件較差,活塞與氣缸壁間摩擦嚴重。為減小摩擦,活塞表面必須耐磨。
? ??要求:1) 要有足夠的剛度和強度,傳力可靠;
??? 2) 導熱性好,耐高壓、耐高溫、耐磨損;
??? 3) 質量小,重量輕,盡可能減小往復慣性力。
鋁合金材料基本上滿足上面的要求,因此,活塞一般都采用高強度鋁合金,但在一些低速柴油機上采用高級鑄鐵或耐熱鋼。
懸架包括彈簧,避震器和控制連桿裝置。它必須能夠足以支撐車身自重和負載。懸架也應能夠承受發(fā)動機和制動對它的反作用力。懸架系統(tǒng)最重要的作用是使輪胎與路面接觸的時間盡可能的長。在支撐車體和負載時,甚至在高低不平的道路上行駛時更加應如此。這四個輪胎的胎面是車與路面相接觸的唯一的部位。發(fā)動機全部輸出的動力,轉向力和制動力都通過與路面相接觸的輪胎的胎面起作用。每當輪胎不與路面接觸或汽車開始打滑時,汽車的控制力(動力、轉向力、制動力)就會減弱甚至喪失。
??? 車體是靠彈簧支撐著,彈簧可分為螺旋型、鋼板型、扭棒型和充氣型。螺旋型彈簧是現(xiàn)代汽車中應用最為廣泛的類型。螺旋型、扭棒型和充氣型彈簧都需要用連桿和連桿臂以使車輪就位。鋼板彈簧提供了對車體的橫向和縱向控制,以防止汽車車輪在行駛時不必要的位移,它們通常用在載重貨車和卡車上。
?? 懸架系統(tǒng)是隨著客運汽車的發(fā)展而變化和改進著。豪華轎車,特種車輛,小型汽車和輕型卡車的設計目的是截然不同的?,F(xiàn)代輪胎的改進不斷地改善了車輛的操作性能,它的改進是與避震器,轉向系統(tǒng)和懸架控制裝置一起同步改進的。
現(xiàn)代汽車在各種操縱條件下都需要輪胎與路面接觸,以便安全、正確地控制并行駛汽車。要想要最大限度的安全駕車,要牢記這四個輪胎必須在任何時間都與路面相接觸。同時需要考慮汽車操縱的靈活性,輪胎的抗耐磨性,汽車駕駛的舒適性和行車的安全性,以達到汽車的有效控制。
懸架系統(tǒng)分為前懸架和后懸架。
? ?前懸架的設計已得到了飛速發(fā)展。從較為粗糙的硬軸結構發(fā)展到了現(xiàn)代的輕型、高強度、支撐型獨立懸架結構,并由于增加了連桿裝置而使汽車的性能得到了改善。懸架結構的改進是隨著路況的改善和駕駛員的需要而進行改進的。
?? 大多數(shù)前置發(fā)動機,后輪驅動的汽車都采用一個簡單的從屬性后懸架。但后輪驅動的獨立懸架結構復雜得多,而且成本極高,因而只用于少數(shù)客車上。
對于前置發(fā)動機前輪驅動的車輛,通過把傳動裝置移至前部,后懸架僅用來調節(jié)駕駛控制力和剎車時的反作用。這就導致了簡化的非獨立的懸架機構,半獨立的懸架機構和獨立的后懸架機構的應用,后者大量應用于新型車輛的結構設計上。