菱錐式無級變速器結(jié)構(gòu)設(shè)計【P=3KW n=1000rpm R=12】
購買設(shè)計請充值后下載,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
LETTER Improving the fatigue strength of the elements of a steel belt for CVT by cavitation shotless peening Hitoshi Soyama Masanori Shimizu Yuji Hattori Yuji Nagasawa Received: 9 May 2008 / Accepted: 19 May 2008 / Published online: 6 June 2008 C211 Springer Science+Business Media, LLC 2008 The elements of steel belts used for continuously variable transmission (CVT) are subjected to a bending load during operation. The weakest portion of the elements is at the root of the neck which works into metallic rings. In order to reduce the stress concentration, the root of the neck is rounded and the shape of element is optimized. Nevertheless, if the fatigue strength of the elements can be improved, the steel belt can be applied to larger engines. Although conventional shot peening is one way of enhancing the fatigue strength, it is very difficult for shot to reach into deep and narrow regions. Recently, a peening method using the impact produced as cavitation bubbles collapse has been developed 19. This method is called cavitation shotless peening (CSP), as shot are not required 36, 8. CSP can peen the surface even through deep narrow cavities, as the bubbles can reach these parts and collapse where peening is required. In the present article, improvement of the fatigue strength of the elements of a CVT metallic belt by CSP was demonstrated experimentally. Elements were treated with different processing times and evaluated by a fatigue test to find the optimum processing time. In order to evaluate the peening effect by CSP, the residual stress was measured. Note that this is the first report published on the improvement made in the fatigue strength of a part with regions that cannot be hit directly by shot. Cavitation shotless peening was applied to the element using cavitating jet apparatus, the details of which can be found in references 36, 8. The jet was injected into the neck region through grooves in the elements, which were stacked and held together, and scanned perpendicularly over the elements, as shown in Fig. 1. The processing time per unit length, t p , is defined by the number of scans n and the scanning speed v; t p n v 1 The cavitation number,r, a key parameter for cavitating jets, is defined by the injection pressure, p 1 , the tank pressure, p 2 , and the saturated vapor pressure, p v ,as follows; r p 2 C0 p v p 1 C0 p 2 p 2 p 1 2 r can be simplified as indicated in Eq. 2 because p 1 C29 p 2 C29 p v . Absolute pressure values were used to determine the cavitation number. Considering the results from previous work 36, 8, the CSP conditions shown in Table 1 were selected. The shape of the element tested was identical to actual elements used in steel belts for CVT. The element was made of Japanese Industrial Standards JIS SK5 and was heat treated in the same way as actual elements. In order to examine the improvements made in the fatigue strength, the residual stress of the elements at position A in Fig. 2 was measured using X-ray diffraction with a two-dimensional position sensitive proportional counter (2D PSPC) using the 2D method 10. After CSP, part of the element was cut off and put into the X-ray H. Soyama (&) Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan e-mail: soyamamm.mech.tohoku.ac.jp M. Shimizu C1 Y. Hattori Toyota Motor Corporation, 1200 Mishuku, Susono 410-1193, Japan Y. Nagasawa Toyota Central R&D Labs. Inc, 41-1 Yokomichi, Nagakute 480-1192, Japan 123 J Mater Sci (2008) 43:50285030 DOI 10.1007/s10853-008-2743-6 apparatus to detect diffractive X-rays, as shown in Fig. 2. A Cr tube operated at 35 kV and 40 mA was used. The diameter of the collimator was 0.1 mm. X-rays were counted for 20 min for each frame. The diffractive plane was the (211) plane of aFe, and the diffractive angle, 2h, was about 156 degree. The values used for Youngs modulus and the Poisson ratio were 210 GPa and 0.28, respectively. The residual stress in the longitudinal direc- tion of the element was obtained from 13 frames using the 2D method. In order to evaluate the fatigue strength of the element, a bending fatigue test was carried out on the element, as shown in Fig. 3. As shown in the figure, the element was fixed and a load F was applied perpendicularly. Figure 4 illustrates the relationship between the number of cycles to failure, N, and the normalized amplitude of the bending force, C22 F, used in the fatigue test, for various pro- cessing times per unit length, t p . The amplitude of the bending force was normalized by the fatigue strength of the non-peened specimen, which was obtained by Littles method 11. The fatigue tests were terminated at N = 10 6 , as it was confirmed that specimens which survived 10 6 cycles also survived 10 7 cycles. From the figure, it is clear that CSP can extend the lifetime of specimens compared to non-peened specimens. The normalized fatigue strength, C22 F FS , of specimens treated by CSP is 1.22 at t p = 2.5 s/mm, 1.38 at t p = 5 s/mm, 1.48 at t p = 10 s/mm, 1.32 at t p = 20 s/mm, and 1.28 at t p = 40 s/mm, respectively. At t p = 10 s/mm, the fatigue strength of the element has been improved by 48% compared with that of the non-peened element. Figure 5 shows the normalized fatigue strength C22 F FS as a function of CSP processing time per unit length, t p . C22 F FS increases with t p until t p = 10 s/mm and then decreases Table 1 CSP conditions Injection pressure p 1 MPa 30 Tank pressure p 2 Mpa 0.42 Cavitation number r 0.014 Nozzle diameter d mm 2 Standoff distance s mm 80 Fig. 2 Measurement position of the residual stress using X-ray diffraction Fig. 3 Schematic diagram of the bending fatigue test of the element Fig. 4 Improvement of the fatigue strength of the element by CSP Fig. 1 Setup of the elements treated by CSP J Mater Sci (2008) 43:50285030 5029 123 slightly. This shows that, as with shot peening, there is an optimum processing time, and that too long processing times cause the fatigue strength to decrease. For the con- ditions applied here, the optimum CSP processing time per unit length was 10 s/mm. Figure 6 shows the variation in the residual stress of the element at position A in Fig. 2 with processing time per unit length, t p . In order to evaluate the reproducibility, the residual stress of two elements was measured for each value of t p using the 2D X-ray diffraction method. Standard deviations for each measurement are shown in Fig. 6. Without CSP, the residual stress was -140 50 MPa and after CSP this was greater than -600 MPa. Thus, CSP can introduce compressive residual stress into the surface even where there are deep and narrow cavities. The impact induced by collapsing cavitation bubbles can introduce compressive residual stress into surfaces that cannot be hit directly by shot (see Fig. 1). The residual stress on the surface increased to between -800 MPa and -1,000 MPa for short processing times, t p = 2.5 s/mm, then decreased slightly saturating at about -800 MPa, as shown in Fig. 6. According to a previous report 5, the compressive residual stress of the sub-surface in materials increases after the residual stress on the surface has saturated. Thus the compressive residual stress of the sub-surface would increase for t p C 2.5 s/mm. This is one of the reasons why the optimum processing time for the present conditions was t p = 10 s/mm, even though the compressive residual stress had reached its maximum at t p = 2.5 s/mm. In order to increase the fatigue strength of the elements of a steel belt for CVT, the elements were treated by CSP. The fatigue strength of the element was evaluated and the residual stress was measured by X-ray diffraction using a 2D method with a 2D PSPC. It was revealed that the fatigue strength of the element could be improved by 48% by CSP. It was also shown that CSP can introduce com- pressive residual stress even into the surface of deep and narrow cavities. This work was partly supported by Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (A) 20246030. References 1. Soyama H, Park JD, Saka M (2000) Trans ASME J Manuf Sci Eng 122:83. doi:10.1115/1.538911 2. Soyama H, Kusaka T, Saka M (2001) J Mater Sci Lett 20:1263. doi:10.1023/A:1010947528358 3. Soyama H, Saito K, Saka M (2002) Trans ASME J Eng Mater Technol 124:135. doi:10.1115/1.1447926 4. Odhiambo D, Soyama H (2003) Inter J Fatigue 25:1217. doi: 10.1016/S0142-1123(03)00121-X 5. Soyama H, Sasaki K, Odhiambo D, Saka M (2003) JSME Int J 46A:398. doi:10.1299/jsmea.46.398 6. Soyama H, Macodiyo DO, Mall S (2004) Tribol Lett 17:501. doi: 10.1023/B:TRIL.0000044497.45014.f2 7. Soyama H (2004) Trans ASME J Eng Mater Technol 126:123. doi:10.1115/1.1631434 8. Soyama H, Macodiyo DO (2005) Tribol Lett 18:181. doi: 10.1007/s11249-004-1774-7 9. Soyama H (2007) J Mater Sci 42:6638. doi:10.1007/s10853- 007-1535-8 10. He BB (2003) Powder Diffr 18:71. doi:10.1154/1.1577355 11. Little RE (1972) ASTM STP 511:29 Fig. 5 Optimum CSP processing time per unit length Fig. 6 Introduction of compressive residual stress into the element by CSP 5030 J Mater Sci (2008) 43:50285030 123 附 錄1:英文文獻(xiàn)翻譯及原文通過噴丸改善無級變速器鋼帶的疲勞強(qiáng)度無級變速器(CVT)采用的鋼帶在操作過程中要受到彎曲載荷。元件的最薄弱的部分是在作為金屬環(huán)的“頸部”的根部。為了減少應(yīng)力集中,頸部的根部做成圓形,并對鋼帶的形狀進(jìn)行了優(yōu)化。不過,如果該元件可以提高疲勞強(qiáng)度,鋼帶可應(yīng)用于大引擎。雖然傳統(tǒng)的噴丸是一種提高疲勞強(qiáng)度的方法,但卻很難到達(dá)深而窄的區(qū)域。最近,一種用沖擊產(chǎn)生空化泡爆裂的沖擊法已經(jīng)開發(fā)出來。這種方法稱為“氣穴噴丸”,因?yàn)閲娚洳皇潜匦璧摹S捎谂菽梢酝ㄟ^深而窄的通道而到達(dá)凹面,并在需要的地方爆裂,所以CSP可以到達(dá)這些區(qū)域,并對表面進(jìn)行加工。在本文中,CSP對無級變速器鋼帶疲勞強(qiáng)度的提高已被實(shí)驗(yàn)證明。元件分別進(jìn)行了不同時間的處理,并進(jìn)行了疲勞測試評估,以找出最佳的處理時間。為了評估CSP噴丸的效果,對殘余應(yīng)力進(jìn)行了測量。請注意,這是第一篇發(fā)表的關(guān)于不直接噴射某一部分而使其疲勞強(qiáng)度提高的報告。CSP使用空化射流裝置應(yīng)用于元件,詳情可見參考文獻(xiàn)。氣體通過堆疊的溝槽注入到元件的頸部,垂直地通過元件,如圖1。每單位長度的處理時間tp,由流動數(shù)n和流動速度v定義:空化射流的關(guān)鍵參數(shù)空化數(shù)r,由注射壓力p1定義,罐內(nèi)壓力p2和飽和蒸氣壓力pv,如下:可用式(2)簡化表示,因?yàn)閜1p2pv。絕對壓力值被用來確定空化數(shù)??紤]到以往的工作成果,表1中所示的CSP處理?xiàng)l件是進(jìn)行了篩選的。測試的元件形狀與無級變速器實(shí)際使用的鋼帶元件是一樣的。該元件是根據(jù)日本工業(yè)標(biāo)準(zhǔn)JIS SK5制造的,與實(shí)際元件的加熱處理相同。為了檢測疲勞強(qiáng)度的提高,在圖2的A位置,通過一個二維位置X -射線衍射靈敏正比計數(shù)器,用二維的方法對元件的殘余應(yīng)力進(jìn)行測量。CSP后,該元素的一部分被切斷,進(jìn)入X -射線衍射儀檢測X射線,如圖2所示。鉻管在35千伏電壓和40 毫安電流的條件下使用。準(zhǔn)直器直徑為0.1毫米。 X射線計數(shù)每幀為20分鐘。衍射平面是一個-Fe平面(211),衍射角2,約156度。楊氏模量和泊松比使用的值分別為210 GPa和0.28。元件的縱向殘余應(yīng)力用二維的方法從13個單位獲得。 為了評估元件的疲勞強(qiáng)度,對元件進(jìn)行了一個彎曲疲勞測試,如圖3所示。正如圖所示,該元件是固定的,負(fù)載F為垂直方向。圖4說明了在疲勞測試中用于多種單位長度處理時間tp的循環(huán)失敗次數(shù)N和規(guī)范化的彎曲力振幅之間的關(guān)系。受彎力振幅是由非噴丸樣品的疲勞強(qiáng)度規(guī)范,這是用里特的方法得到的。疲勞試驗(yàn)被終止在N = 106,因?yàn)樗C實(shí)了能承受106次循環(huán)的樣品,也能承受107次。從圖中可明顯看出,相對于非噴丸樣品,CSP可延長樣品的壽命。經(jīng)CSP處理的樣品的歸一疲勞強(qiáng)度,當(dāng)tp = 2.5 s/mm時,為1.22,當(dāng)tp = 5 s/mm時,為1.38,當(dāng)tp = 10 s/mm時,為1.48,當(dāng)tp = 20 s/mm時,為1.32,當(dāng)tp = 40 s/mm時,為1.28。當(dāng)tp = 10 s/mm時,元件的疲勞強(qiáng)度相對于非噴丸元件提高了48%。圖5所示為每單位長度的CSP處理時間tp的函數(shù)歸疲勞強(qiáng)度。隨著tp增加而升高,直到tp = 10 s/mm則有所降低。這表明,噴丸存在一個最佳的處理時間,如果處理時間過長會造成疲勞強(qiáng)度降低。對于在這里適用的條件,最佳的CSP每單位長度的處理時間為10 s/mm。圖6顯示的是圖2中的A位置元件的殘余應(yīng)力在單位長度處理時間tp下的變化情況。為了評估的重復(fù)性,分別對兩種元件的殘余應(yīng)力在單位長度的處理時間下用二維X射線衍射法進(jìn)行了測試。 每次測量的標(biāo)準(zhǔn)偏差如圖6所示。若不用CSP處理,殘余應(yīng)力為-140 50 MPa,而用CSP處理后,殘余應(yīng)力強(qiáng)于-600 MPa。因此,CSP可以對表面有殘余壓應(yīng)力,即使是深而窄的腔。由空化旗袍爆裂產(chǎn)生的影響可以給表面帶來殘余壓應(yīng)力,是直接噴射所不能做到的(見圖1)。當(dāng)tp = 2.5 s/mm時,短時間處理的表面的殘余應(yīng)力提高到-800 MPa and -1,000 MPa之間,然后略有下降到大約-800 MPa,如圖6所示。根據(jù)先前的一份報告,材料表面的殘余應(yīng)力飽和后,其次表面的殘余壓應(yīng)力會增加。因此次表面的殘余壓應(yīng)力在tp 2.5 s/mm時將增加。這就是目前條件下的最佳處理時間為tp = 10 s/mm的原因之一,即使當(dāng)tp = 2.5 s/mm時殘余壓應(yīng)力達(dá)到了最大值。為了使無級變速器鋼帶元件的疲勞強(qiáng)度增加,對元件進(jìn)行了CSP處理。元件的疲勞強(qiáng)度進(jìn)行了評估,且通過一個二維位置X -射線衍射靈敏正比計數(shù)器,用二維的方法對元件的殘余應(yīng)力進(jìn)行了測量。它表明經(jīng)過CSP處理后元件的疲勞強(qiáng)度可提高48%。也證明了CSP可以對元件表面有殘余壓應(yīng)力,即使是深而窄的腔。附 錄2:英文文獻(xiàn)原文畢業(yè)論文(設(shè)計)任務(wù)書論文(設(shè)計)題目: 菱錐無級變速器結(jié)構(gòu)設(shè)計 學(xué)號: 2008963121 姓名: 曾凱 專業(yè): 機(jī)械設(shè)計制造及其自動化 指導(dǎo)教師: 系主任: 一、主要內(nèi)容及基本要求 1、菱錐式無級變速器的結(jié)構(gòu)設(shè)計; 2、輸入功率P=3kw,輸入轉(zhuǎn)速n=1000rpm,調(diào)速范圍R=12; 3、完成結(jié)構(gòu)設(shè)計:裝配圖A0#1張、零件圖總量A0#不少于1張; 4、設(shè)計說明書一份; 5、英文文獻(xiàn)翻譯一份,不少于3000Words。 二、重點(diǎn)研究的問題 1、菱錐式無級變速器原理及其結(jié)構(gòu); 2、變速原理的傳動結(jié)構(gòu)的實(shí)現(xiàn)。 三、進(jìn)度安排序號各階段完成的內(nèi)容完成時間1熟悉課題及基礎(chǔ)資料第一周2調(diào)研及收集資料第二周3方案設(shè)計與討論第三四周4無級變速器布局設(shè)計第五六周5無級變速器總裝配圖設(shè)計第七九周6無級變速器工程圖設(shè)計第十十一周7撰寫說明書第十二周8英文文獻(xiàn)翻譯,答辯第十二周四、應(yīng)收集的資料及主要參考文獻(xiàn) 1 阮忠唐. 機(jī)械無級變速器M. 機(jī)械工業(yè)出版社. 2 阮忠唐.機(jī)械無級變速器設(shè)計與選用指南M.化學(xué)工業(yè)出版社. 3 徐灝.機(jī)械設(shè)計手冊第3卷M.機(jī)械工業(yè)出版社. 4 毛謙德.袖珍機(jī)械設(shè)計師手冊第3版M.機(jī)械工業(yè)出版社. 5 機(jī)械設(shè)計手冊新版第2卷M.機(jī)械工業(yè)出版社. 湘 潭 大 學(xué)畢業(yè)論文(設(shè)計)評閱表學(xué)號 2008963121 姓名 曾凱 專業(yè) 機(jī)械設(shè)計制造及其自動化 畢業(yè)論文(設(shè)計)題目: 菱錐無級變速器結(jié)構(gòu)設(shè)計 評價項(xiàng)目評 價 內(nèi) 容選題1.是否符合培養(yǎng)目標(biāo),體現(xiàn)學(xué)科、專業(yè)特點(diǎn)和教學(xué)計劃的基本要求,達(dá)到綜合訓(xùn)練的目的;2.難度、份量是否適當(dāng);3.是否與生產(chǎn)、科研、社會等實(shí)際相結(jié)合。能力1.是否有查閱文獻(xiàn)、綜合歸納資料的能力;2.是否有綜合運(yùn)用知識的能力;3.是否具備研究方案的設(shè)計能力、研究方法和手段的運(yùn)用能力;4.是否具備一定的外文與計算機(jī)應(yīng)用能力;5.工科是否有經(jīng)濟(jì)分析能力。論文(設(shè)計)質(zhì)量1.立論是否正確,論述是否充分,結(jié)構(gòu)是否嚴(yán)謹(jǐn)合理;實(shí)驗(yàn)是否正確,設(shè)計、計算、分析處理是否科學(xué);技術(shù)用語是否準(zhǔn)確,符號是否統(tǒng)一,圖表圖紙是否完備、整潔、正確,引文是否規(guī)范;2.文字是否通順,有無觀點(diǎn)提煉,綜合概括能力如何;3.有無理論價值或?qū)嶋H應(yīng)用價值,有無創(chuàng)新之處。綜合評 價該生畢業(yè)設(shè)計選題符合培養(yǎng)目標(biāo),能較好的體現(xiàn)學(xué)科專業(yè)特點(diǎn)和教學(xué)計劃的基本要求,能達(dá)到綜合訓(xùn)練的目的,難度適中,工作量適度。通過畢業(yè)設(shè)計體現(xiàn)了該生具有較強(qiáng)的查閱文獻(xiàn)和綜合歸納資料以及綜合運(yùn)用知識的能力;具備了設(shè)計,計算,分析與熟練運(yùn)用計算機(jī)的能力。畢業(yè)設(shè)計圖表完整,整潔。圖紙和計算工作飽滿,計算書和圖紙質(zhì)量較高。同意其參加答辯。評閱人: 2012年5月27日 湘 潭 大 學(xué) 畢業(yè)論文(設(shè)計)鑒定意見學(xué)號: 2008963121 姓名: 曾凱 專業(yè): 機(jī)械設(shè)計制造及其自動化 畢業(yè)論文(設(shè)計說明書) 頁 圖 表 張論文(設(shè)計)題目: 菱錐無級變速器結(jié)構(gòu)設(shè)計 內(nèi)容提要:本設(shè)計采用的是以菱形錐輪作為中間傳動元件,通過改變錐輪的工作半徑來實(shí)現(xiàn)輸出軸轉(zhuǎn)速連續(xù)變化的菱錐錐輪式無級變速器。本文分析了在傳動過程中變速器的主動輪、菱錐、和外環(huán)的工作原理和受力關(guān)系;詳細(xì)推導(dǎo)了實(shí)用的菱錐錐輪式無級變速器設(shè)計的計算公式;并針對設(shè)計所選擇的參數(shù)進(jìn)行了具體的設(shè)計計算;繪制了所計算的菱錐錐輪式無級變速器的裝配圖和主要傳動元件的零件圖,將此變速器的結(jié)構(gòu)和工藝等方面的要求表達(dá)得更為清楚。由于機(jī)械無級變速器絕大多數(shù)是依靠摩擦傳遞動力,故承受過載和沖擊的能力差,且不能滿足嚴(yán)格的傳動比要求。指導(dǎo)教師評語 該生在本次畢業(yè)設(shè)計中表現(xiàn)出工作比較扎實(shí),能如期完成設(shè)計任務(wù),具有一定的獨(dú)立工作能力,有查閱文獻(xiàn)、設(shè)計以及動手能力。能夠較好的運(yùn)用AUTOCAD軟件。設(shè)計方案合理可行,圖面質(zhì)量較好。設(shè)計說明書撰寫比較認(rèn)真、規(guī)范,具有一定的專業(yè)英文文獻(xiàn)閱讀與翻譯能力。同意其參加答辯。建議成績評定為:指導(dǎo)教師: 2012年 5月26日 答辯簡要情況及評語 根據(jù)答辯情況,答辯小組同意其成績評定為:答辯小組組長: 2012年 5月 日答辯委員會意見經(jīng)答辯委員會討論,同意該畢業(yè)設(shè)計成績評定為:答辯委員會主任: 2012年5月 日目 錄第一章緒 論41.1機(jī)械無級變速器的發(fā)展概況41.2機(jī)械無級變速器的特點(diǎn)41.3機(jī)械無級變速器的研究現(xiàn)狀81.4課題的研究內(nèi)容和要求10第二章菱錐式無級變速器工作原理132.1 無級變速器的工作原理132.2 菱錐無級變速器的結(jié)構(gòu)特點(diǎn)152.3 菱錐無級變速器的變速原理16第三章菱錐無級變速器部分零件的設(shè)計與計算203.1 菱錐與主動輪結(jié)構(gòu)尺寸的計算203.2傳動件有關(guān)尺寸計算203.3 傳動件有關(guān)尺寸的校核213.4 加壓裝置有關(guān)尺寸的計算:223.5 輸入、輸出軸的結(jié)構(gòu)設(shè)計:243.6 輸入、輸出軸上軸承的選用25第四章 主要零件的校核264.1 輸出、輸入軸的校核264.2 軸承的校核28總 結(jié)28致謝30附錄 :英文文獻(xiàn)翻譯32目 錄第一章緒 論41.1機(jī)械無級變速器的發(fā)展概況41.2機(jī)械無級變速器的特點(diǎn)41.3機(jī)械無級變速器的研究現(xiàn)狀81.4課題的研究內(nèi)容和要求10第二章菱錐式無級變速器工作原理132.1 無級變速器的工作原理132.2 菱錐無級變速器的結(jié)構(gòu)特點(diǎn)152.3 菱錐無級變速器的變速原理16第三章菱錐無級變速器部分零件的設(shè)計與計算203.1 菱錐與主動輪結(jié)構(gòu)尺寸的計算203.2傳動件有關(guān)尺寸計算203.3 傳動件有關(guān)尺寸的校核213.4 加壓裝置有關(guān)尺寸的計算:223.5 輸入、輸出軸的結(jié)構(gòu)設(shè)計:243.6 輸入、輸出軸上軸承的選用25第四章 主要零件的校核264.1 輸出、輸入軸的校核264.2 軸承的校核28總 結(jié)28致謝30附錄 :英文文獻(xiàn)翻譯32機(jī)械菱錐式無級變速器結(jié)構(gòu)設(shè)計摘要: 機(jī)械無級變速器是一種能適應(yīng)工藝要求多變、工藝流程機(jī)械化和自動化發(fā)展以及改善機(jī)械工作性能的一種通用傳動裝置。本文簡要介紹了菱錐式機(jī)械無級變速器的基本結(jié)構(gòu)、設(shè)計計算的方法、材質(zhì)及潤滑等方面的知識,并以此作為本次無級變速器設(shè)計的理論基礎(chǔ)。 本設(shè)計采用的是以菱形錐輪作為中間傳動元件,通過改變錐輪的工作半徑來實(shí)現(xiàn)輸出軸轉(zhuǎn)速連續(xù)變化的菱錐錐輪式無級變速器。本文分析了在傳動過程中變速器的主動輪、菱錐、和外環(huán)的工作原理和受力關(guān)系;詳細(xì)推導(dǎo)了實(shí)用的菱錐錐輪式無級變速器設(shè)計的計算公式;并針對設(shè)計所選擇的參數(shù)進(jìn)行了具體的設(shè)計計算;繪制了所計算的菱錐錐輪式無級變速器的裝配圖和主要傳動元件的零件圖,將此變速器的結(jié)構(gòu)和工藝等方面的要求表達(dá)得更為清楚。由于機(jī)械無級變速器絕大多數(shù)是依靠摩擦傳遞動力,故承受過載和沖擊的能力差,且不能滿足嚴(yán)格的傳動比要求。這種無級變速器有良好的結(jié)構(gòu)和性能優(yōu)勢,具有很強(qiáng)的實(shí)用價值,完全可以作為批量生產(chǎn)的無級變速器。其主要特點(diǎn)是:1.變速范圍較寬;2.恒功率特性好;3.可以升、降速,正、反轉(zhuǎn)。4.運(yùn)轉(zhuǎn)平穩(wěn),抗沖擊能力較強(qiáng);5.輸出功率較大;6.使用壽命長;7.調(diào)速簡單,工作可靠;8.容易維修。關(guān)鍵詞:機(jī)械無級變速器 摩擦式 菱錐錐輪式Ling cone CVT mechanical structure designNAME: Tu YuTEACHER:Nie SonghuiAbstract: The mechanical variable speed drives is a general purpose gearing which can accommodate the variable requirements of the process planning, mechanization of the schedule drawing ,the development of automation and the improvement of the mechanical working capabilities. The article briefly introduce the basic structure, the way of design and calculation, material and lubricate of the pyramid type variable speed drives, and taking them as the theory basis of the design of mechanical variable speed drives.This design uses the pyramid wheel as the middle transmission component, by changing its working radius to realize the continuous change of the output axis. This article analyzes the working theory and the working forces of the drive wheel, pyramid wheel and outer ring during the transmission process. It also deduces the practical calculation formula of the pyramid wheel type variable speed drives, it also goes on the material calculation aim at the selection parameter. It protracts the assemble-drawing of the pyramid wheel type variable speed drives and the accessory-drawing of the mostly drive component. So it can express more clearly of the structure and process planning of the variable speed drives. Since the vast majority of mechanical transmission rely on mechanical friction CVT to transmit power, so it is of poor quality to withstand the impact of overload, and can not fullfil the foot strict transmission ratio.The variable speed drives has good structure and properties, and it can use as batch production. The most specialties: 1 wide range of variable speed;2 the constant output power; 3 it can rotate positively and versedly; 4 stable accuracy of speed; 5 high output power; 6 long life; 7 simply and precise control of speed; 8 easy maintain.Key Words: mechanical variable speed drives, friction type, pyramid type第一章 緒 論1.1機(jī)械無級變速器的發(fā)展概況無級變速器(Continuously Variable Transmission,簡稱 CVT)是一種能夠使機(jī)器的輸出軸轉(zhuǎn)速在兩個極值范圍內(nèi)連續(xù)變化的傳動部件。它具有輸入和輸出兩根軸,通過固體、液體、電磁流等中間介質(zhì)將輸入、輸出軸直接或間接地聯(lián)系起來,以傳遞動力。當(dāng)對輸入輸出軸的聯(lián)系關(guān)系進(jìn)行控制時,即可使兩軸間的傳動比在兩個極值范圍內(nèi)連續(xù)而任意地變化。其結(jié)構(gòu)特征主要是:需由變速傳動機(jī)構(gòu)、調(diào)速機(jī)構(gòu)以及加壓裝置和輸出機(jī)構(gòu)三部分組成。傳動系統(tǒng)的調(diào)速一般有兩種方式:一種是動力源速度恒定,調(diào)節(jié)傳動機(jī)構(gòu)的傳動比,即所謂的機(jī)械無級變速傳動;一種是傳動機(jī)構(gòu)的傳動比恒定,調(diào)節(jié)動力源速度,即所謂的電力無級變速傳動。無級變速器的適用范圍廣,可以在驅(qū)動固定的情況下,因工作阻力變化而需要調(diào)節(jié)轉(zhuǎn)速以產(chǎn)生相應(yīng)的驅(qū)動力矩(如化工行業(yè)中的攪拌機(jī)械,即要求隨著攪拌物料的粘度、阻力增大而能相應(yīng)減慢攪拌速度);可以根據(jù)工況要求調(diào)節(jié)速度(如起重運(yùn)輸機(jī)械要求隨物料及運(yùn)行區(qū)段的變化而能相應(yīng)改變提升或運(yùn)行速度,食品機(jī)械中的烤干機(jī)或制藥機(jī)械要求隨著溫度變化而調(diào)節(jié)轉(zhuǎn)移速度);可以為獲得恒定的工作速度或張力而需要調(diào)節(jié)速度(如斷面切削機(jī)床加工時需保持恒定的切削線速度,電工機(jī)械中的繞線機(jī)需保持恒定的卷繞速度,紡織機(jī)械中的漿紗機(jī)及輕工機(jī)械中的薄膜機(jī)皆需調(diào)節(jié)轉(zhuǎn)速以保持恒定的張力);可以為適應(yīng)整個系統(tǒng)中各種工況、工位、工序或單元的不同要求而需協(xié)調(diào)運(yùn)轉(zhuǎn)速度以及需要配合自動控制者(如各種各樣半自動或自動的生產(chǎn)、操作或裝配流水線);可以為探求獲得最佳效果而需變換速度(如試驗(yàn)機(jī)械或離心機(jī)需調(diào)速以獲得最佳分離效果);可以為節(jié)約源而需進(jìn)行調(diào)速(如風(fēng)機(jī)、水泵等);此外,還有按各種規(guī)律的或不規(guī)律的變化要求而進(jìn)行速度調(diào)節(jié)以及綜上所述,可以看出采用無級變速器,尤其是配合減速傳動時進(jìn)一步擴(kuò)大其變速范圍與輸出轉(zhuǎn)矩,能更好地適應(yīng)各種機(jī)械的工況要求,使之效能最佳,在提高產(chǎn)品的產(chǎn)量與質(zhì)量,適應(yīng)產(chǎn)品變換需要,節(jié)約能源,實(shí)現(xiàn)整個系統(tǒng)的機(jī)械化、自動化等各方面皆具有顯著的效果。所以無級變速器目前已成為一種基本的通用傳動形式,廣泛應(yīng)用于紡織、輕工、食品、包裝、化工、機(jī)床、電工、起重運(yùn)輸、礦山冶金、工程、農(nóng)業(yè)、國防、及試驗(yàn)等各類機(jī)械,已開發(fā)有各種類型并已系列化生產(chǎn)。1.2機(jī)械無級變速器的特點(diǎn)CVT技術(shù)真正應(yīng)用在汽車上不過十幾年的時間,但它比傳統(tǒng)的手動和自動變速器的優(yōu)勢卻是顯而易見的: 1. 結(jié)構(gòu)簡單,體積小,零件少,大批量生產(chǎn)后的成本肯定要低于當(dāng)前普通自動變速器的成本; 2. 它的工作速比范圍寬,容易與發(fā)動機(jī)形成理想的匹配,從而改善燃燒過程,進(jìn)而降低油耗和排放; 3. 具有較高的傳送效率,功率損失少,經(jīng)濟(jì)性高。 當(dāng)然,CVT技術(shù)也有它的弱點(diǎn),比如傳動帶容易損壞,無法承受較大的載荷等等,這些技術(shù)上的難關(guān)使得它一直以來多應(yīng)用在小排量、低功率的汽車上。 目前CVT技術(shù)發(fā)展得相當(dāng)迅速,各大汽車廠家都在加強(qiáng)這一領(lǐng)域的研發(fā)。尤其是在混合動力汽車具有廣泛前景的將來,CVT的地位和作用更是無可替代,它將會是未來變速器發(fā)展的大趨勢1、經(jīng)濟(jì)性CVT可以在相當(dāng)寬的范圍內(nèi)實(shí)現(xiàn)無級變速,從而獲得傳動系與發(fā)動機(jī)工況的最佳匹配,提高整車的燃油經(jīng)濟(jì)性。德國的大眾公司在自己的Golf VR6轎車上分別安裝了4-AT和CVT進(jìn)行ECE市區(qū)循環(huán)和ECE郊區(qū)循環(huán)測試,證明CVT能夠有效節(jié)約燃油(如表1) 安裝4-AT和CVT的大眾公司的Golf VR6汽車的燃油消耗對比 試驗(yàn)油耗 4-AT CVT ECE市區(qū)循環(huán),L/100km 14.4 13.2 ECE郊區(qū)/遠(yuǎn)程循環(huán),L/100km 10.8 9.8 90km/h勻速,L/100km 8.3 7.0 120km/h,L/100km 10.3 9.2 2、動力性汽車的后備功率決定了汽車的爬坡能力和加速能力。汽車的后備功率愈大,汽車的動力性愈好。由于CVT的無級變速特性,能夠獲得后備功率最大的傳動比,所以CVT的動力性能明顯優(yōu)于機(jī)械變速器(MT)和自動變速器(AT)。 3、排放CVT的速比工作范圍寬,能夠使發(fā)動機(jī)以最佳工況工作,從而改善了燃燒過程,降低了廢氣的排放量。ZF公司將自己生產(chǎn)的CVT裝車進(jìn)行測試,其廢氣排放量比安裝4-AT的汽車減少了大約10%。 4、成本CVT系統(tǒng)結(jié)構(gòu)簡單,零部件數(shù)目比AT(約500個)少(約300個),一旦汽車制造商開始大規(guī)模生產(chǎn),CVT的成本將會比AT小。由于采用該系統(tǒng)可以節(jié)約燃油,隨著大規(guī)模生產(chǎn)以及系統(tǒng)、材料的革新,CVT零部件(如傳動帶或傳動鏈、主動輪、從動輪和液壓泵)的生產(chǎn)成本,將降低20%-30%。 勿庸置疑,CVT變速器的技術(shù)含量和制造難度都要比MT變速器高,與AT變速器相仿,由于金屬帶式CVT的結(jié)構(gòu)簡單,所含的零件數(shù)量比AT變速器少40左右,整車的質(zhì)量因而也有所減輕。 5、駕駛平順性由于CVT的速比變化是連續(xù)不斷的,所以汽車的加速或減速過程非常平緩,而且駕駛非常簡單、安全。從而使用戶獲得全方位的“行駛樂趣”。無級變速器優(yōu)缺點(diǎn)優(yōu)點(diǎn):制造成本低,動力輸出平滑順暢,燃油經(jīng)濟(jì)性堪比手動擋。缺點(diǎn):由于鋼制皮帶本身的承受力有限,因此大排量大扭矩的轎車不太適合,也不適宜做激烈的運(yùn)動。無級變速器類型為實(shí)現(xiàn)無級變速,按傳動方式可采用液體傳動、電力傳動和機(jī)械傳動三種方式。 液體傳動液體傳動分為兩類:一類是液壓式,主要是由泵和馬達(dá)組成或者由閥和泵組成的變速傳動裝置,適用于中小功率傳動。另一類為液力式,采用液力耦合器或液力矩進(jìn)行變速傳動,適用于大功率(幾百至幾千千瓦)。 液體傳動的主要特點(diǎn)是:調(diào)速范圍大,可吸收沖擊和防止過載,傳動效率較高,壽命長,易于實(shí)現(xiàn)自動化:制造精度要求高,價格較貴,輸出特性為恒轉(zhuǎn)矩,滑動率較大,運(yùn)轉(zhuǎn)時容易發(fā)生漏油。 電力傳動電力傳動基本上分為三類:一類是電磁滑動式,它是在異步電動機(jī)中安裝一電磁滑差離合器,通過改變其勵磁電流來調(diào)速,這屬于一種較為落后的調(diào)速方式。其特點(diǎn)結(jié)構(gòu)簡單,成本低,操作維護(hù)方便:滑動最大,效率低,發(fā)熱嚴(yán)重,不適合長期負(fù)載運(yùn)轉(zhuǎn),故一般只用于小功率傳動。 二類是直流電動機(jī)式,通過改變磁通或改變電樞電壓實(shí)現(xiàn)調(diào)速。其特點(diǎn)是調(diào)速范圍大,精度也較高,但設(shè)備復(fù)雜,成本高,維護(hù)困難,一般用于中等功率范圍(幾十至幾百千瓦),現(xiàn)已逐步被交流電動機(jī)式替代。 三類是交流電動機(jī)式,通過變極、調(diào)壓和變頻進(jìn)行調(diào)速。實(shí)際應(yīng)用最多者為變頻調(diào)速,即采用一變幅器獲得變幅電源,然后驅(qū)動電動機(jī)變速。其特點(diǎn)是調(diào)速性能好、范圍大、效率較高,可自動控制,體積小,適用功率范圍寬:機(jī)械特性在降速段位恒轉(zhuǎn)矩,低速時效率低且運(yùn)轉(zhuǎn)不夠平穩(wěn),價格較高,維修需專業(yè)人員。近年來,變頻器作為一種先進(jìn)、優(yōu)良的變速裝置迅速發(fā)展,對機(jī)械無級變速器產(chǎn)生了一定的沖擊。 機(jī)械傳動機(jī)械無級變速器與液力無級變速器和電力無級變速器相比,結(jié)構(gòu)簡單,維護(hù)方便,價格低廉,傳動效率較高,實(shí)用性強(qiáng),傳動平穩(wěn)性好,工作可靠。特別是某些機(jī)械無級變速器在很大范圍內(nèi)具有恒功率的機(jī)械特性(這是電力和液壓無級調(diào)速裝置所難達(dá)到的)。因此,可以實(shí)現(xiàn)能適應(yīng)變工況工作,簡化傳動方案,節(jié)約能源和減少污染等要求,但不能從零開始變速。機(jī)械式無級變速器按傳動原理一般可分為:摩擦式、帶式、鏈?zhǔn)胶兔}動式四大類,約 30種類型。摩擦式 摩擦式無級變速器是指利用主、從動剛性元件(或通過中間元件)在接觸處產(chǎn)生的摩擦力和潤滑油膜牽引力進(jìn)行傳動,并可通過改變其接觸處的工作半徑進(jìn)行無級變速的一種變速器。摩擦式無級變速器由三部分組成:傳遞運(yùn)動和動力的摩擦變速傳動機(jī)構(gòu);保證產(chǎn)生摩擦力所需的加壓裝置;實(shí)現(xiàn)變速的調(diào)速機(jī)構(gòu)。它具有各種不同的結(jié)構(gòu)類型,一般可分為:直接傳動式,即主、從動摩擦元件直接接觸傳動;中間元件式,即主、從動元件通過中間元件進(jìn)行傳動;行星傳動式,即中間元件作行星運(yùn)動的傳動機(jī)構(gòu)。目前,國內(nèi)應(yīng)用較廣或已形成系列進(jìn)行生產(chǎn)的主要有:錐盤環(huán)盤式、多盤式、轉(zhuǎn)環(huán)直動式、鋼球錐輪式、菱錐式、行星錐盤和行星環(huán)錐無級變速器等。2、鏈傳動式 鏈?zhǔn)綗o級變速器是一種利用鏈輪和鋼質(zhì)撓性鏈條作為傳動元件來傳遞運(yùn)動和動力的機(jī)械變速裝置。它屬于開發(fā)較早、應(yīng)用較多的一種通用型變速器。鏈?zhǔn)綗o級變速器由鏈輪和鏈條構(gòu)成的傳動機(jī)構(gòu)、調(diào)速機(jī)構(gòu)和鏈條張緊加壓機(jī)構(gòu)三部分組成。它是通過主、從動鏈輪的兩對錐盤的軸向移動實(shí)現(xiàn)調(diào)速的。按鏈條結(jié)構(gòu)形式可分為以下幾類:滑片鏈無級變速器、滾柱鏈無級變速器、套環(huán)鏈無級變速器、擺銷鏈無級變速器等幾種。前兩種變速器發(fā)展比較成熟,應(yīng)用廣泛,后兩種變速器體現(xiàn)了鏈?zhǔn)綗o級變速器的發(fā)展方向。3、帶傳動式 它與鏈?zhǔn)阶兯倨飨嗨?,其變速傳動機(jī)構(gòu)是由作為主、從動帶輪的兩對錐盤及張緊在其上的傳動帶組成。其工作原理是利用傳動帶左右兩側(cè)面與錐盤接觸所產(chǎn)生的摩擦力進(jìn)行傳動,并通過改變兩錐盤的軸向距離以調(diào)整它們與傳動帶的接觸位置和工作半徑,從而實(shí)現(xiàn)無級變速。它由于具有結(jié)構(gòu)簡單,工作平穩(wěn)等優(yōu)點(diǎn),在機(jī)械無級變速器中可以說是應(yīng)用最廣的一種。帶式無級變速器根據(jù)傳動帶的形狀不同,可分為平帶無級變速器和 V 帶無級變速器兩種類型。帶式無級變速器結(jié)構(gòu)簡單、承載能力強(qiáng)、變速范圍大、制造容易、工作平穩(wěn)、易損件少、能吸收振動、噪聲低、節(jié)能環(huán)保、帶的更換方便,尤其是它克服了以往各類無級變速器傳遞功率較小的缺點(diǎn) ,可用于需要中大功率范圍。因而是機(jī)械無級變速器中廣泛應(yīng)用的一種;其缺點(diǎn)是外形尺寸較大而變速范圍較小。4、脈動式 脈動式無級變速器主要由傳動機(jī)構(gòu)、輸出機(jī)構(gòu)(超越離合器)和調(diào)速機(jī)構(gòu)三個基本部分組成的低副機(jī)構(gòu),故具有以下特點(diǎn):傳動可靠、壽命長、變速范圍大、調(diào)速精度高、最低輸出轉(zhuǎn)速可為零、調(diào)速性能穩(wěn)定、靜止和運(yùn)動時均可調(diào)速、結(jié)構(gòu)較簡單、制造較容易。但它存在著有待進(jìn)一步解決的問題,例如:調(diào)速范圍在擴(kuò)大之后,在結(jié)構(gòu)和使用上如何實(shí)現(xiàn)增速變速傳動和采用復(fù)合式超越離合器;高速輸出時不平衡慣性力所引起的振動增大,如何避免共振現(xiàn)象;低速輸出時脈動不均勻性顯著增加,如何提高單向超越離合器的承載能力和抗沖擊能力等。國際上,在機(jī)械式脈動無級變速器領(lǐng)域,目前以德國、美國和日本的技術(shù)水平較高,其成熟技術(shù)以德國的 GUSA型及美國的 ZERO-MAX 型系列產(chǎn)品為代表。就目前來說,鑒于結(jié)構(gòu)性能上的局限性,現(xiàn)有脈動式無級變速器主要用于中小功率(18kW 以下)、中低速(輸入n1=1440r/min,輸出 n2=0-1000r/min)、降速型以及對輸出軸旋轉(zhuǎn)均勻性要求不嚴(yán)格的場合。例如在熱處理設(shè)備、清洗設(shè)備以及化工、醫(yī)藥、塑料、食品和電器裝配運(yùn)輸線等領(lǐng)域的應(yīng)用。1.3機(jī)械無級變速器的研究現(xiàn)狀CVT變速傳動機(jī)構(gòu)早在1908年就已應(yīng)用于摩托車。1955年,荷蘭DAF公司首先在汽車上試裝采用“V”型橡膠帶的CVT。由于結(jié)構(gòu)設(shè)計和選材等方面的問題,該傳動機(jī)構(gòu)體積過大,傳動比過小,無法滿足汽車行駛的要求。1972年H Van-Doorne博士成立Van Doornes Transmission B.V公司,簡稱VDT公司,進(jìn)行大規(guī)模試驗(yàn)研究金屬帶式無級變速器。因此,習(xí)慣上把這種金屬帶式無級變速器稱為VDT-CVT。金屬帶傳動不僅可以實(shí)現(xiàn)傳遞功率容量大、效率高,同時也改變了帶傳動傳遞的傳統(tǒng)原理,將拉式傳動改為推式為主。 由于金屬帶大量生產(chǎn)過程的復(fù)雜性,直到1987年才實(shí)現(xiàn)CVT商品化。日本Subaru汽車廠是首先開始大量生產(chǎn)CVT的汽車廠。1987年Subaru將電子控制的CVT(P821 型)裝備于Justy汽車(發(fā)動機(jī)排量11.2 升)上,成功占領(lǐng)了日本市場。之后,歐洲的Ford和Fiat把CVT(機(jī)械式,P811 型)裝備于發(fā)動機(jī)排量為1.11.6L的轎車上,投入市場,受到用戶好評。兩系統(tǒng)主要結(jié)構(gòu)特點(diǎn)為: 1、P811以濕式多片離合器為起步裝置,P821用電磁離合器作起步裝置 2、P811采用機(jī)液控制系統(tǒng),P821采用電液控制系統(tǒng)。 3、他們都以外嚙合齒輪作為液壓元件,并采用單液壓回路,即主動缸的面積大于被動缸面積的非對稱結(jié)構(gòu)。 90 年代,VDT公司在第一代產(chǎn)品生產(chǎn)和使用總結(jié)基礎(chǔ)上,開發(fā)第二代產(chǎn)品。第二代產(chǎn)品主要技術(shù)指標(biāo)較多地超過目前最先進(jìn)地液力機(jī)械自動變速器,具有更好的經(jīng)濟(jì)性和操縱平順型。并在結(jié)構(gòu)上作了較多改進(jìn),如: 1、采用新型金屬傳動帶 2、雙級滾子葉片泵 3、全電子控制系統(tǒng) 目前,金屬帶式無級變速是國外汽車無級變速傳動研究和推廣的重點(diǎn),世界主要汽車公司都在研究和開發(fā)金屬帶無級變速系統(tǒng)。1991 年,德國ZF公司應(yīng)用VDT技術(shù)開發(fā)了適用于發(fā)動機(jī)排量為1.52.5L前置前驅(qū)動轎車的CVT系列產(chǎn)品。1996年,日本Honda公司和荷蘭的VDT公司共同研制的新型無級變速器已裝備在發(fā)動機(jī)排量為1.6L經(jīng)濟(jì)型轎車Civic上。裝備的CVT傳動裝置稱為Honda Multi Matic其產(chǎn)品與CVT的產(chǎn)品有些不同的結(jié)構(gòu)特點(diǎn),如: 1、起步離合器放到了被動輪的輸出端 2、用了雙壓力回路,于是主動缸面積與被動缸面積可做成相等的對稱結(jié)構(gòu); 3、增加電氣系統(tǒng)出現(xiàn)故障后的備用液壓回路。 金屬帶式無級變速器由VDT公司取得重大突破,所以習(xí)慣上又稱為VDTCVT,其關(guān)鍵部件包括:金屬傳動帶、工作輪、油泵、起步離合器、中間減速機(jī)構(gòu)以及控制系統(tǒng)組成。 傳動器的主、被動輪由固定和可動的兩部分組成,形成V型槽,與金屬帶嚙合。當(dāng)輸入工作帶輪的可動部分沿軸向外移動,輸出工作輪的可動部分沿軸向內(nèi)移動,使得輸入帶輪工作半徑變小,而輸出帶輪半徑變大,輸出與輸入帶輪的工作半徑之比變大,即傳動比變大,反之,傳動比將變小,工作半徑大小變化是連續(xù)的。金屬傳動帶有多個金屬片與兩組金屬環(huán)組成。每片金屬片的厚度為1.4mm,在兩側(cè)工作輪擠壓力作用下傳遞動力。每組金屬環(huán)由數(shù)條厚為0.18mm的環(huán)帶疊合而成,金屬環(huán)功用是提供預(yù)緊力,在動力傳遞過程中,約束和引導(dǎo)金屬片的運(yùn)動,有時承擔(dān)部分轉(zhuǎn)矩傳遞。主從動輪由可動與不動的半錐輪組成。其工作面大多為直線錐面體。在液壓控制系統(tǒng)作用下,依靠鋼球滑道結(jié)構(gòu)作軸向移動,可連續(xù)的改變傳動帶輪工作半徑,實(shí)現(xiàn)無級變速傳動。油泵是為CVT傳動系統(tǒng)提供控制、冷卻和潤滑的液壓油源。常用的液壓油泵有兩種形式,既齒輪泵和葉片泵。為提高液壓油泵的工作效率,在最近開發(fā)的CVT傳動器中采用滾子式葉片泵。汽車起步離合器包括濕式多片離合器、電磁離和器和液力變矩器三種。液力變矩器與CVT系統(tǒng)合理匹配,可使汽車以足夠大的牽引力平順的起步,提高駕駛舒適性。當(dāng)發(fā)動機(jī)轉(zhuǎn)速高時,閉鎖離合器將泵輪與渦輪鎖住,成為整機(jī)傳動,提高了傳動效率。但成本較高,為降低成本,研究人員一直在致力于引用電控技術(shù),在電磁離合器或多片濕式離合器上實(shí)現(xiàn)液力變矩器的傳遞特性。由于無級變速機(jī)構(gòu)可提供的傳動比(即速比,輸出帶輪的工作半徑與輸入帶輪工作半徑之比)范圍為0.4452.6左右,不能完全滿足整車傳動比變化范圍的要求,因而設(shè)有中間減速機(jī)構(gòu)??刂葡到y(tǒng)是用來實(shí)現(xiàn)CVT系統(tǒng)傳動速比無級自動變化的VDTCVT控制系統(tǒng),分機(jī)液控制系統(tǒng)和電液控制系統(tǒng)。機(jī)液控制系統(tǒng)主要有油泵、液壓調(diào)節(jié)閥(速比和帶與輪間壓緊力的調(diào)節(jié))、傳感器(油門和發(fā)動機(jī)轉(zhuǎn)速)和主、從工作輪的液壓缸及管道組成。日本的本田公司開發(fā)的CVT中,采用是電液控制系統(tǒng),系統(tǒng)可以利用電子控制系統(tǒng)容易實(shí)現(xiàn)控制算法的優(yōu)點(diǎn),對系統(tǒng)進(jìn)行精確的控制。而采用液壓執(zhí)行機(jī)構(gòu)可以利用液壓系統(tǒng)反應(yīng)快的特點(diǎn)。CVT初期產(chǎn)品多采用機(jī)液控制系統(tǒng),近期一般采用電液控制系統(tǒng),但電液控制系統(tǒng)成本高。 ECVT電子控制系統(tǒng)由電磁控制離合器、電子控制單元、傳感元件、電磁閥組成。傳感元件包括選檔操縱手柄位置傳感器、節(jié)氣門位置傳感器、車速傳感器和制動踏板位置傳感器等,它們?yōu)榭刂茊卧峁└鞣N與汽車行駛狀態(tài)有關(guān)的信號??刂茊卧源藶楦鶕?jù)做出判斷,并將控制信號送至電磁閥,控制電磁離合器和液壓系統(tǒng)的工作。當(dāng)選檔手柄位于P、N之外任一位置時,電子控制單元使離合器內(nèi)的金屬粉末磁化,離合器接合,將發(fā)動機(jī)的動力平穩(wěn)地傳遞給主動輪。液壓系統(tǒng)根據(jù)實(shí)際需要輸出適當(dāng)?shù)膲毫刂茙л唭刹糠珠g相對滑移程度,并使兩帶輪工作直徑的變化趨勢相反,進(jìn)而改變變速器傳動比。為提高ECVT總體工作性能,電磁閥還可調(diào)節(jié)液壓系統(tǒng)的線壓力。當(dāng)變速器的輸出轉(zhuǎn)矩小于最大轉(zhuǎn)矩的60%時,線壓力降低,帶輪夾緊力相應(yīng)減小,變速器工作更加平穩(wěn)。反之,帶輪在高壓作用下夾緊鋼帶,避免鋼速打滑,保證動力傳遞的可靠性。德國ZF公司開發(fā)的智能型ECVT加大了金屬帶的寬度,它所能傳遞的最大轉(zhuǎn)矩達(dá)210Nm,可應(yīng)用在發(fā)動機(jī)排量2.5L的中型轎車上。它還具有更好的動力性和燃油經(jīng)濟(jì)性。制造工藝要求較高給CVT(ECVT)的普及帶來了新的困難。但隨著汽車制造工業(yè)水平的不斷提高,這一問題將會解決。1.4課題的研究內(nèi)容和要求本設(shè)計采用的是以菱形錐輪作為中間傳動元件,通過改變錐輪的工作半徑來實(shí)現(xiàn)輸出軸轉(zhuǎn)速連續(xù)變化的菱錐錐輪式無級變速器。本文分析了在傳動過程中變速器的主動輪、菱錐、和外環(huán)的工作原理和受力關(guān)系;詳細(xì)推導(dǎo)了實(shí)用的菱錐錐輪式無級變速器設(shè)計的計算公式;并針對設(shè)計所選擇的參數(shù)進(jìn)行了具體的設(shè)計計算;繪制了所計算的菱錐錐輪式無級變速器的裝配圖和主要傳動元件的零件圖,將此變速器的結(jié)構(gòu)和工藝等方面的要求表達(dá)得更為清楚。目前,工業(yè)自動化的不斷提高和無級變速器的廣泛應(yīng)用也對它提出了更高的要求。機(jī)械式無級變速器主要特點(diǎn)是結(jié)構(gòu)簡單,價格低廉;轉(zhuǎn)速穩(wěn)定,滑動率??;工作可靠,具有恒功率機(jī)械特性和較高的傳動效率;維修方便;適用于條件惡劣的應(yīng)用工況。但零部件加工及潤滑要求較高,承載能力低,抗過載及耐沖擊性能較差,故一般適合于中小功率傳動。與齒輪變速箱調(diào)速相比,只適用于小功率調(diào)速系統(tǒng)。摩擦式由于主要依靠摩擦而使機(jī)械效率較低;帶式和鏈?zhǔn)接捎谥圃斐杀竞统叽巛^大所以變速范圍較??;脈動式由于結(jié)構(gòu)問題依然存在速度脈動。由于機(jī)械無級變速器自身的特點(diǎn)已不能完全適應(yīng)各種機(jī)械的工況要求,隨著科學(xué)技術(shù)的飛速發(fā)展,又出現(xiàn)了電力調(diào)速技術(shù)和液壓調(diào)速技術(shù)。在電力調(diào)速技術(shù)中,由于直流調(diào)速技術(shù)的設(shè)備復(fù)雜,成本高,維護(hù)困難等不足,促使人們尋求一種更為先進(jìn)的調(diào)速方式,即交流調(diào)速技術(shù)的研發(fā)已逐步取代了直流調(diào)速技術(shù)的使用。交流電動機(jī)雖然有很多優(yōu)點(diǎn),但其最大的缺點(diǎn)是調(diào)速困難。隨著社會化大生產(chǎn)的發(fā)展,生產(chǎn)制造技術(shù)的日益復(fù)雜,對生產(chǎn)工藝的要求進(jìn)一步提高,這就要求生產(chǎn)機(jī)械能夠在工作速度、定位精度、快速啟動和制動、控制靈活性和自動化水平等方面達(dá)到更高水平,力求既能夠具有良好的驅(qū)動性能,使執(zhí)行機(jī)構(gòu)工作最優(yōu)化,同時也能夠把人們從繁重的體力勞動中解放出來。因此,人們努力尋找解決交流電動機(jī)調(diào)速難的問題,從而出現(xiàn)了更先進(jìn)的變頻調(diào)速、伺服控制調(diào)速等新技術(shù)。交流變頻調(diào)速的理論基礎(chǔ)是壓頻比一定的變頻調(diào)速方法。目前變頻調(diào)速控制器主要采用以下控制結(jié)構(gòu):交一交變頻和交一直一交變頻,變頻控制可分為兩類:脈沖幅值調(diào)節(jié)方式(PAM)和脈寬調(diào)制方式(PWN),后一種是目前變頻控制中應(yīng)用最多的一種方式。這兩種控制方式基本上是基于異步電動機(jī)靜態(tài)數(shù)學(xué)模型的基礎(chǔ),其運(yùn)行動態(tài)性能指標(biāo)不高,只能適用于一般工況,對于動態(tài)性能要求提高的應(yīng)用場合又出現(xiàn)了交流矢量控制技術(shù)。近十年來,除交流變頻調(diào)速外,交流伺服控制異軍突起,其應(yīng)用已日益廣泛。由于伺服系統(tǒng)在矢量控制的基礎(chǔ)上,通過電動機(jī)上的轉(zhuǎn)子位置檢測元件,對轉(zhuǎn)子位置進(jìn)行動態(tài)監(jiān)控,使得整個系統(tǒng)具有非常高的動態(tài)響應(yīng)特性,其調(diào)速范圍、輸出力矩等均大大優(yōu)于普通變頻系統(tǒng)。交流伺服調(diào)速方式是當(dāng)今最為先進(jìn)的無級變速技術(shù),其公認(rèn)的優(yōu)點(diǎn)使其必將成為日后調(diào)速控制的主要手段。隨著其控制性能的日益完善,特別是信息技術(shù)等諸多功能的開發(fā)順應(yīng)了傳動系統(tǒng)控制自動化的歷史潮流,因此它必將成為未來調(diào)速技術(shù)的主流。在不斷追求更先進(jìn)、更高效的新型調(diào)速技術(shù)的同時,需要注意其性能價格比問題。因此,機(jī)械調(diào)速技術(shù)在一些簡單的、要求不高的單機(jī)、手動調(diào)速工況中仍占有一席之地。所以未來的機(jī)械式無級變速器要求能夠高效地傳遞功率,有較大的變速范圍,調(diào)速性能穩(wěn)定且運(yùn)行平穩(wěn)。采用齒輪嚙合或桿件組合實(shí)現(xiàn)無級變速是機(jī)械式無級變速器今后發(fā)展的一個方向,因?yàn)檫@種類型的無級變速器可以實(shí)現(xiàn)無摩擦,高效地傳遞大功率,變速平穩(wěn),壽命長,變速范圍大且結(jié)構(gòu)簡單,制造容易。課題研究的內(nèi)容:機(jī)械菱錐式無級變速器結(jié)構(gòu)的設(shè)計;無級變速器變速器的結(jié)構(gòu)設(shè)計與計算;對關(guān)鍵部件進(jìn)行強(qiáng)度和壽命校核設(shè)計要求:輸入功率P=3kw,輸入轉(zhuǎn)速n=1000rpm,調(diào)速范圍Rb=12;結(jié)構(gòu)設(shè)計時應(yīng)使制造成本盡可能低;安裝拆卸要方便;外觀要勻稱,美觀;調(diào)速要靈活,調(diào)速過程中不能出現(xiàn)卡死現(xiàn)象,能實(shí)現(xiàn)動態(tài)無級調(diào)速;關(guān)鍵部件滿足強(qiáng)度和壽命要求;畫零件圖和裝配圖。第二章 菱錐式無級變速器工作原理2.1 無級變速器的工作原理無級變速器(CVT:Continuous Variable Transmission)與有級式的主要區(qū)別在于:它的速比不是間斷的,而是一系列連續(xù)的值,譬如可以從3.455一直變化到0.85。CVT結(jié)構(gòu)比傳統(tǒng)自動變速器簡單,體積更小,它既沒有手動變速器的眾多齒輪副,也沒有自動變速器復(fù)雜的行星齒輪組,它主要靠主、從動輪和金屬帶或滾輪轉(zhuǎn)盤來實(shí)現(xiàn)速比的無級變化。其原理是與普通的變速箱一樣大小不一的幾組齒輪在操控下有分有合,形成不同的速比,像自行車的踏板經(jīng)大小輪盤與鏈條帶動車輪以不同的速度旋轉(zhuǎn)。由于不同的力度對各組齒輪產(chǎn)生的推力大小不一,致使變速箱輸出的轉(zhuǎn)速也隨之變化,從而實(shí)現(xiàn)不分檔次的徐緩轉(zhuǎn)動。CVT采用傳動帶和可變槽寬的棘輪進(jìn)行動力傳遞,即當(dāng)棘輪變化槽寬肘,相應(yīng)改變驅(qū)動輪與從動輪上傳動帶的接觸半徑進(jìn)行變速,傳動帶一般用橡膠帶、金屬帶和金屬鏈等。CVT是真正無級化了,它的優(yōu)點(diǎn)是重量輕,體積小,零件少,與AT比較具有較高的運(yùn)行效率,油耗較低。但CVT的缺點(diǎn)也是明顯的,就是傳動帶很容易損壞,不能承受較大的載荷,只能限用于在1升排量左右的低功率和低扭矩汽車,因此在自動變速器占有率約4以下。近年來經(jīng)過各大汽車公司的大力研究,情況有所改善。CVT將是自動變速箱的發(fā)展方向。國內(nèi)目前有多款車型裝備了CVT,如東風(fēng)日產(chǎn)天籟、軒逸、奇駿等全系列車型,一汽大眾奧迪,廣汽本田飛度,南汽菲亞特西耶那、帕力奧,奇瑞旗云等。CVT的工作原理CVT (Continuously Variable Transmission) 即無級變速器,是能在保持發(fā)動機(jī)的低油耗和低轉(zhuǎn)速的同時連續(xù)無級改變速比的變速器。 CVT技術(shù)目前只能用在小排量汽車上的,而各個汽車廠商針對CVT都有了不同的叫法,當(dāng)然也會根據(jù)他們自己情況作出改動啦,比如本田就叫eCVT,而日產(chǎn)日產(chǎn)則稱為Hyper CVT。 人們平時乘車時所關(guān)心的是油耗、動力以及車的駕駛性能。但是對發(fā)動機(jī)來說,油耗、動力、駕駛性能有其各自最佳轉(zhuǎn)數(shù)范圍。發(fā)動機(jī)的最佳運(yùn)轉(zhuǎn)試范圍是扭矩曲線的峰值部分,通常也是指發(fā)動機(jī)的高速領(lǐng)域。但另一方面,油耗也是有其最佳 圍的。不知大家是否聽說過合理油耗駕駛一詞。當(dāng)車在高速路上以時速 80km 行駛時并且發(fā)動機(jī)轉(zhuǎn)速保持在 2500 轉(zhuǎn)左右,半油門狀態(tài)時,即維持了最小限度的馬力又不浪費(fèi)汽油的高效率發(fā)揮,此時發(fā)動機(jī)處於最佳運(yùn)轉(zhuǎn)狀態(tài)。如果以此狀態(tài)在一般路面上行駛的油耗也能令人滿意,但是,對於裝配了只有4、5檔變速器的汽車來說,這是相當(dāng)困難的問題。解決此問題的最好方式就是使用CVT (無級變速器) 。CVT可以在維持最佳油耗下的發(fā)動機(jī)轉(zhuǎn)速的同時實(shí)現(xiàn)無變檔的連續(xù)變速。而且,CVT在提高發(fā)動機(jī)的轉(zhuǎn)數(shù)達(dá)到發(fā)揮最佳功率的 圍時,可以選擇全功率狀態(tài)下的行駛。普通車在傾斜路面上行駛,會發(fā)生3檔時發(fā)動機(jī)轉(zhuǎn)數(shù)過高,4檔時馬力不足的尷尬局面。而自動變速的車輛,變速箱會在3檔4檔之間往返,車子的變速處於不穩(wěn)定的狀態(tài)。安裝了CVT的話,在保持發(fā)動機(jī)的最佳動力領(lǐng)域的同時可實(shí)現(xiàn)無級變速,使駕駛者能夠真正享受輕松駕駛的感受。 只有在提高發(fā)動機(jī)動力的情況下,才能夠?qū)崿F(xiàn)全動力的駕駛。例如在盤山路上,就會出現(xiàn)用3檔發(fā)動機(jī)轉(zhuǎn)數(shù)過高,用4檔動力不足的現(xiàn)象。這就是使用自動變速器 (AT) 的車輛自動改變檔位而處於不穩(wěn)定的狀態(tài)。CVT可以在保持發(fā)動機(jī)輸出動力的整個范圍內(nèi)實(shí)現(xiàn)動力的無級傳遞,從而實(shí)現(xiàn)順暢駕駛。 通常的自動變速器是有檔變速,通過幾個齒輪來決定變速比。CVT是通過改變2個滑輪的槽的寬度而實(shí)現(xiàn)變速比的無級次改變,從而可以按駕駛的狀況得到最佳驅(qū)動力。通常這2個滑輪受到的力量非常大,通過改變2個滑輪的槽的寬度,使加在滑輪上的鋼帶的輸入軸/輸出軸的各直徑間實(shí)現(xiàn)無級連續(xù)變化,按各種狀況選擇最佳的變速比行駛,就像帶有變速器的自行車的齒輪變成無級變速齒輪一樣。由於是無級變速,在換檔時完全沒有變速的沖擊,行駛非常平穩(wěn)。通常的4檔AT轎車是將4個檔的齒輪按行駛狀態(tài)進(jìn)行變速。而CVT是無級變速,所以不會出現(xiàn)上坡時檔位在3檔、4檔之間來回變化的情況。這種無齒的變速器,實(shí)現(xiàn)了扭矩的零損失傳遞,可實(shí)現(xiàn)平穩(wěn)有力的行駛,對於汽車工業(yè)是一個巨大的貢獻(xiàn)。 全電子控制提高了駕駛性能并同時降低了油耗。一般CVT的變速控制、油壓控制、固定控制全部由電子控制,從而實(shí)現(xiàn)了按駕駛情況選擇速比的最佳選擇。 由於傳統(tǒng)的CVT采用的是沒有增大扭矩作用的電磁離合器,在起步時缺乏強(qiáng)有力的扭矩,所以起步加速性較差。CVT采用了液壓變矩器,其增加扭矩的作用使起步加速性能有很大的提高。液壓變矩器的超低扭力使傳統(tǒng)CVT所不擅長的斜坡起步、倒車入庫等性能也得到了提高。它的內(nèi)部并沒有傳統(tǒng)變速箱的齒輪傳動結(jié)構(gòu),而是以兩個可改變直徑的傳動輪,中間套上傳動帶來傳動?;驹硎菍鲃訋啥死@在一個錐形帶輪上,帶輪的外徑大小靠油壓大小進(jìn)行無級的變化。起步時,主動帶輪直徑變?yōu)樽畲笾睆?,而被動帶輪變?yōu)樽钚?,?shí)現(xiàn)較高的傳動比。隨著車速的增加和各個傳感器信號的變化,電腦控制系統(tǒng)來斷定控制兩個帶輪的控制油壓,最終改變帶輪直徑的連續(xù)變化,從而在整個變速過程中達(dá)到無級變速。 而錐形帶輪之間的傳動帶,在過去的一段時間,由于材質(zhì)的原因,所受的拉力有限,所能承受的扭矩有限,只能用在摩托車式小排量車上。近些年來,隨著材料技術(shù)、加工工藝的不斷提高,生產(chǎn)出特殊材料制造的剛制傳動帶和錐型帶輪。徹底實(shí)現(xiàn)了大功率、大扭矩轎車的要求。 CVT最大的特點(diǎn)是無級控制輸出的速比,在行駛中達(dá)到行云流水的感覺,從而沒有了換檔的感覺。乘員感覺不到換檔沖擊,動力銜接連貫。這樣CVT在行駛時增加了舒適性,加速也會比自動變速器快。CVT系統(tǒng)主要包括主動輪組、從動輪組、金屬帶和液壓泵等基本部件。金屬帶由兩束金屬環(huán)和幾百個金屬片構(gòu)成。主動輪組和從動輪組都由可動盤和固定盤組成,與油缸靠近的一側(cè)帶輪可以在軸上滑動,另一側(cè)則固定??蓜颖P與固定盤都是錐面結(jié)構(gòu),它們的錐面形成V型槽來與V型金屬傳動帶嚙合。發(fā)動機(jī)輸出軸輸出的動力首先傳遞到CVT的主動輪,然后通過V型傳動帶傳遞到從動輪,最后經(jīng)減速器、差速器傳遞給車輪來驅(qū)動汽車。工作時通過主動輪與從動輪的可動盤作軸向移動來改變主動輪、從動輪錐面與V型傳動帶嚙合的工作半徑,從而改變傳動比??蓜颖P的軸向移動量是由駕駛者根據(jù)需要通過控制系統(tǒng)調(diào)節(jié)主動輪、從動輪液壓泵油缸壓力來實(shí)現(xiàn)的。由于主動輪和從動輪的工作半徑可以實(shí)現(xiàn)連續(xù)調(diào)節(jié),從而實(shí)現(xiàn)了無級變速。 在金屬帶式無級變速器的液壓系統(tǒng)中,從動油缸的作用是控制金屬帶的張緊力,以保證來自發(fā)動機(jī)的動力高效、可靠的傳遞。主動油缸控制主動錐輪的位置沿軸向移動,在主動輪組金屬帶沿V型槽移動,由于金屬帶的長度不變,在從動輪組上金屬帶沿V型槽向相反的方向變化。金屬帶在主動輪組和從動輪組上的回轉(zhuǎn)半徑發(fā)生變化,實(shí)現(xiàn)速比的連續(xù)變化。 汽車開始起步時,主動輪的工作半徑較小,變速器可以獲得較大的傳動比,從而保證驅(qū)動橋能夠有足夠的扭矩來保證汽車有較高的加速度。隨著車速的增加,主動輪的工作半徑逐漸減小,從動輪的工作半徑相應(yīng)增大,CVT的傳動比下降,使得汽車能夠以更高的速度行駛。2.2 菱錐無級變速器的結(jié)構(gòu)特點(diǎn)菱錐變速器的輸入軸與輸出軸位于同一軸線上,采用了中間體并列分流的傳動結(jié)構(gòu),因而結(jié)構(gòu)緊湊、體積小、單位體積的承載能力大。 菱錐的形狀是對稱的,兩側(cè)椎體的接觸母線A和B平行,而且相對于輸入和輸出軸傾斜安裝。因?yàn)閬砹忮F與主動輪和外環(huán)的連線在變速及運(yùn)轉(zhuǎn)過程中始終與母線A、B垂直,所以主動輪和外環(huán)作用在菱錐上的壓緊力、互相抵消,菱錐及其心軸不受彎曲力矩作用。這樣,菱錐心軸和菱錐之間的滾針軸承幾乎沒有磨擦損失。圖3-51是菱錐裝在支架上的情況。 菱錐母線與水平軸線之間的交角很小,通常取=,因輸入和輸出軸的軸承上受到的軸向力很小,僅為法向總壓緊力的1/8,因此,傳遞大功率時軸承負(fù)載不嚴(yán)重。 采用了兩套鋼球V形槽自動加壓裝置,保證了傳動件不會受到不必要的、過大的預(yù)壓緊力,為提高傳動效率與壽命有利。由于加壓裝置的槽升角較大(輸入側(cè)=、輸出側(cè)),而摩擦副處所需的軸向壓緊力又較小,因此加壓裝置的動作特別靈敏,抗沖擊能力也較強(qiáng)。由于結(jié)構(gòu)對稱,變速器可以正反轉(zhuǎn)。它靠散熱片散熱降溫,并提高殼體剛性。目前,國外生產(chǎn)的中小型菱錐無級變速器(10kW)是與電動機(jī)直接聯(lián)接的,傳動部分靠飛濺潤滑;而較大功率者(10kW以上)則有風(fēng)扇冷卻,并用油泵進(jìn)行強(qiáng)迫潤滑。油泵的排油端裝有高靈敏度流量開關(guān),當(dāng)排油量下降時,它立即使主電機(jī)停止。為了適應(yīng)大起動轉(zhuǎn)矩和沖壓負(fù)載的條件,在電機(jī)與變速器之間裝有磁粉離合器。菱錐變速器的安裝形式有立式和臥式兩種,可根據(jù)需要選用。2.3 菱錐無級變速器的變速原理3P3T3T3P302r23r21bLH(b)(a)d1d3d213r23r21r23r2113O2O2O22T3 P32 圖2-1菱錐式無級變速器原理圖2-1為一種型式的菱錐式無級變速器。輸入軸1的轉(zhuǎn)速為1,菱錐2被壓緊在輸入與輸出軸端部的環(huán)狀空間之間,菱錐2的軸線與輸入軸1的軸線之間的夾角為,菱錐2繞自身的軸線轉(zhuǎn)動,菱錐2的水平位置由位置調(diào)節(jié)機(jī)構(gòu)進(jìn)行調(diào)節(jié)。設(shè)菱錐2與輸入軸環(huán)的接觸點(diǎn)到輸入軸線的距離為0.5d1,菱錐2的接觸半徑為r21;菱錐2與輸出環(huán)的接觸點(diǎn)到輸出軸線的距離為0.5d3,菱錐2的接觸半徑為r23。由圖12.13(b)的尺寸關(guān)系得r21、r23的函數(shù)式分別為r21(LbH)tan,r23btan,L、H為結(jié)構(gòu)常數(shù),b為自變量。設(shè)菱錐2作無相對滑動的相對滾動,菱錐2與輸入軸環(huán)之間的速度關(guān)系為0.5d1 12 r21,菱錐2與輸出環(huán)之間的速度關(guān)系為0.5d3 32 r23,則輸出軸3的轉(zhuǎn)速3與傳動比i13分別為當(dāng)菱錐2在水平方向移動(在垂直方向也產(chǎn)生附加的移動)時,輸出軸的轉(zhuǎn)速得到調(diào)節(jié)。該種無級變速器傳遞的功率可達(dá)37 KW,機(jī)械效率為0.80.93,傳動比在0.87之間。設(shè)P3、T3分別表示輸出軸3的功率與轉(zhuǎn)矩,則菱錐式無級變速器的機(jī)械特征如圖12.14所示。圖2-2為菱錐在支架上的分布;圖2-3示為菱錐無級變速器的兩種結(jié)構(gòu),變速器的主要元件是主動輪3、菱錐4和外環(huán)8。菱錐一般為38個圓周方向均布支撐在支架11上。鋼球V形槽加壓裝置2的加壓盤用鍵聯(lián)接在輸入軸1上,而主動輪3則滑套在軸1上,輪3在加壓裝置的作用下以適當(dāng)?shù)膲毫εc菱錐接觸,菱錐4又始終與外環(huán)8保持接觸。外環(huán)8與從動輪6之間也是用鋼球V形槽式加壓裝置聯(lián)接的。因此,動力由軸1輸入經(jīng)自動加壓裝置2傳給3,再依靠摩擦力的作用,經(jīng)菱錐4、外環(huán)8、輸出側(cè)加壓裝置7和從動輪6而傳遞到輸出軸5上。由于菱錐變速器是升、降變速型的,所以采用了兩套自動加壓裝置,各傳動副之間的壓緊力是與負(fù)載成正比變化的,因而不會打滑。啟動時的壓緊力是由預(yù)壓彈簧提供的。圖2-2 支架分布圖2-3無級變速機(jī)的兩種結(jié)構(gòu) 調(diào)速時,滑動齒輪(螺桿)10,通過支架11上的齒條(螺母)使支架11作水平軸向移動,而菱錐4則在隨支架作水平移動的同時,還自動地沿菱錐心軸作相對滑動,使菱錐兩側(cè)椎體的工作直徑發(fā)生變化,從而實(shí)現(xiàn)無級調(diào)速。圖2-4是輸出轉(zhuǎn)速最低和最高時,菱錐與主、從動輪的相對位置。調(diào)速是在運(yùn)動過程中進(jìn)行的。圖2-4 高低速輸出軸第三章 菱錐無級變速器部分零件的設(shè)計與計算3.1 菱錐與主動輪結(jié)構(gòu)尺寸的計算結(jié)構(gòu)見圖3-1圖3-1菱錐結(jié)構(gòu)尺寸查1表3-10 因?yàn)?12,則、的推薦值為1.75、則 =1750 r/min , =146r/min 因=1000r/min,當(dāng)1500r/min時,查13-5 =0.77則 計算功率 =P/=3/0.77=3.896查1表 3-12,變速器型號取K10表 3- 13,得菱錐工作高度h= 63mm,主動輪工作直徑=124,外環(huán)工作直徑=252mm ,接觸線長度b=3mm,主動輪接觸圓弧半=0.5, 又=124mm,所以=60mm3.2傳動件有關(guān)尺寸計算菱錐心軸傾斜角=,錐頂半角=菱錐母線與水平軸線的交角=-=菱錐長度L=2hsin80mm, 最大直徑=hsec80mm,最小直徑=hseccos2=19.8mm 由于表3-13所推薦 及故 菱錐的工作直徑=24mm=78mm菱錐母線有效工作段長度S=45mm菱錐沿心軸方向移動量 =7mm支架水平移動量 38mm支架凸緣間距 ,其中 =35mm極限位置時,菱錐端面與凸緣間的間隙,通常取C=35mm,此時取C=5mm,則 =108mm.菱錐孔徑取=14mm.3.3 傳動件有關(guān)尺寸的校核= = =156.319, =1785.474=11.42=1.785=0.156菱錐的轉(zhuǎn)速 =6080.611r/min =1799.185r/min3.4 加壓裝置有關(guān)尺寸的計算:鋼球式自動加壓裝置它由加壓盤4,加壓鋼球3,保持架2,調(diào)整墊圈7,蝶形彈簧6和摩擦輪與加壓盤相對端面上各有的幾條均布的V行槽。每個槽內(nèi)有一個鋼球,中間以保持架2保持鋼球的相對位置。摩擦輪與加壓盤之間還有預(yù)壓碟行彈簧并襯以調(diào)整墊圈。改變調(diào)整墊圈的厚度,即可調(diào)整彈簧的變形量及預(yù)壓力。如下圖下圖3-1所示 圖3-1 鋼球V行槽式加壓裝置鼓形滾子中心圓直徑 ,取84mm 式中D1錐輪直徑。 加壓盤V行槽的槽傾角 式中 錐輪錐頂半角; f 錐輪與鋼球的摩擦系數(shù)。 鼓形滾子直徑 ,取12mm 鼓形滾子個數(shù) =6 , f=0.040.045槽傾角 = 取= 輸出側(cè)加壓裝置 鋼球中心圓直徑 取=270 mm 鋼球直徑為,個數(shù)為 ,則=14mm, =6 槽傾角 = 取= 最大接觸應(yīng)力的驗(yàn)算 由于按表推薦之與值小于按公式計算所得到的數(shù)值,而且與均未取理論計算值,故應(yīng)進(jìn)行允許傳動功率N或最大接觸應(yīng)力的驗(yàn)算。在設(shè)計時只需進(jìn)行一項(xiàng)即可。 接觸點(diǎn)曲率半徑=14.6091=h-=63-=13.6263=mm=mm正壓力=N=N最大接觸應(yīng)力的驗(yàn)算=192=192=2218.252=192=192=1916.7674許用接觸應(yīng)力查3表25.2-22 取材料為GCr15,取=2300MPa經(jīng)驗(yàn)算,、均小于,符合要求。3.5 輸入、輸出軸的結(jié)構(gòu)設(shè)計:輸入軸:n=1000r/min,P=3Kw,根據(jù)查表15-3,選用45鋼,調(diào)度處理取輸出軸的最小直徑顯然是它裝聯(lián)軸器處軸的直徑,據(jù)此選聯(lián)軸器型號計算轉(zhuǎn)矩 ,查表14-1,取=1.3T=950000=28650Nmm=37245 Nmm由于, n n,因有鍵存在,軸的尺寸需加大3%5%,查6表11-411-14 彈性柱銷選LX2,其孔徑取28mm,則最小軸徑段取28mm,公稱轉(zhuǎn)矩和許用轉(zhuǎn)速分別為560 Nm,6300r/min。選長系列,L=62mm,則軸的長度取58mm,為了壓在聯(lián)軸器上,查5表9-4,b=8, h=7,L=30,公差為h8。輸出軸的設(shè)計和輸入軸基本相似。 3.6 輸入、輸出軸上軸承的選用深溝球軸承6,根據(jù)尺寸,選d=35,則軸承型號為61807 D=47, B=7, =45因軸承同時受有徑向力和軸向力的作用,角接觸球軸承10選取角接觸球軸承7008C,軸徑取40,D=68,B=15,a=14.7圓柱滾子26軸承取NU1006。滾針軸承25取NA4905。第四章 主要零件的校核4.1 輸出、輸入軸的校核選輸出軸做校核。輸出軸的載荷分析圖如下圖圖4-1 軸的校核分析圖根據(jù)軸的危險截面,計算出截面處的及M的值如下表4.1載荷 水平面H 垂直面V 支反力F FNH1=2046N , FNH2=752N FNV1=1587N , FNV2=292N 彎矩M MH1=7180.2N.mm MH2=18800N.mm MV1=3550N.mm MV2=9806.95N.mm 總彎矩 M1 = N.mm M2= N.mm扭矩T T=28650N.mm彎矩扭合成應(yīng)力校核軸端強(qiáng)度 進(jìn)行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面D)的強(qiáng)度。軸的計算應(yīng)力按公式計算。 取 =0.6,=12.6MPa前已經(jīng)選定軸的材料為45鋼,調(diào)制處理,由表查得。所以 ,故安全。4.2 軸承的校核 按手冊選擇C=4900N的軸承應(yīng)此軸承的基本額定靜載荷=4000N。驗(yàn)算如下:求相對軸向載荷對應(yīng)的e值與Y值。相對軸向載荷,在表中介于0.070.13之間,相對應(yīng)的e值為0.270.31,Y為1.61.4。用線性插值法求Y值。 Y=1.4+= X=0.56,Y=1.6 3) 求當(dāng)量動載荷= 4) 驗(yàn)算軸承的壽命: 所以安全???結(jié)菱錐無級變速具有變速范圍寬、輸出轉(zhuǎn)速低、容量大和功率恒定等一系列優(yōu)點(diǎn),因而目前世界上各先進(jìn)工業(yè)國均對其進(jìn)行了系列化生產(chǎn),并獲得了廣泛的應(yīng)用。菱錐無級變速器的輸入軸與輸出軸位于同一軸線上,采用了中間體并列分流的傳動結(jié)構(gòu),因而結(jié)構(gòu)緊湊、體積小、單位體積的承載能力大。菱錐無級變速器采用了兩套自動加壓裝置,各傳動副之間的壓緊力是與負(fù)載成正比變化的,因而不會打滑。啟動時的壓緊力是由預(yù)壓彈簧提供的。菱錐的形狀是對稱的,兩側(cè)錐體的接觸母線平行,而且相對于輸入和輸出軸傾斜安裝。因?yàn)榱忮F與主動輪和外環(huán)接觸點(diǎn)的連線在變速及運(yùn)轉(zhuǎn)過程中始終與母線垂直,所以主動輪和外環(huán)作用在菱錐上的壓緊力互相抵消,菱錐及其心軸不受彎曲力矩作用,這樣,菱錐心軸和菱錐之間的滾針軸承幾乎沒有摩擦
收藏