購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
小型果樹移栽機
一、 課題研究的目的和意義
棗樹在栽植過程中都是沿用傳統(tǒng)的人工栽植的方法,傳統(tǒng)栽植法勞動力大、強度大,機器的機動性、適應(yīng)性低,能耗高、效率較低等問題。要實現(xiàn)由傳統(tǒng)栽植技術(shù)向現(xiàn)代栽植技術(shù)的轉(zhuǎn)變。需因地制宜,大力發(fā)展棗樹栽植機械化。為了充分利用資源減少自然災(zāi)害,爭取高產(chǎn),機械化移栽是有效途徑。這樣可以解決人工栽植過程中的栽植勞動強度大,所需勞動力較多,產(chǎn)品粗大笨重,成本高、效率低,質(zhì)量難以保證的問題。紅棗種植過程機械化程度的提高,大大降低了勞動強度,大量解放勞動生產(chǎn)力向二三產(chǎn)業(yè)轉(zhuǎn)移,有助于農(nóng)村城市化、工業(yè)化,對提高農(nóng)民素質(zhì)和生活質(zhì)量,實現(xiàn)農(nóng)業(yè)現(xiàn)代化具有重要的作用。紅棗生產(chǎn)中的移栽是棗樹撫育機械之一,是實現(xiàn)棗業(yè)全程機械化的一個重要一環(huán)。因此移栽機研究的目的毋庸置疑。
生態(tài)果業(yè)機械化發(fā)展已經(jīng)步入新的歷史起點,生態(tài)果業(yè)機械化作為發(fā)展現(xiàn)代化農(nóng)業(yè)的主要內(nèi)和主要標志,適合地區(qū)生產(chǎn)需要的栽植機植種類較少、單一,科技含量不高,不能滿足果業(yè)生產(chǎn)發(fā)展的要求。因此在此大好的趨勢之下發(fā)展小型果樹移栽機是非常有意義的。
二、現(xiàn)狀及分析
1、國內(nèi)研究現(xiàn)狀及分析
國內(nèi)對農(nóng)作物的機械化育苗移栽技術(shù)的研究早在20世紀50年代未60年代初就已經(jīng)開始。由于沒有突破育苗移栽機械化過程中的技術(shù)難題.使這一技術(shù)擱淺。
近年來由于農(nóng)業(yè)生產(chǎn)的發(fā)展,新技術(shù)、新工藝的出現(xiàn),為移栽機具的發(fā)展提供了很好的發(fā)展前景,20世紀80年代以后近年來由于農(nóng)業(yè)生產(chǎn)的發(fā)展,移栽機具發(fā)展迅速,從不到l 000臺上升到將近8 000臺。東北等大型農(nóng)場多采用工廠化營養(yǎng)缽苗和機械化栽植技術(shù),總體水平相對較高。
我國長期以來,樹苗栽植一直沿用傳統(tǒng)的手工勞動方式,勞動強度大,生產(chǎn)效率低。由于棗樹種植面積的增加和農(nóng)村勞動力的轉(zhuǎn)移,移栽技術(shù)落后、效率低已成為棗樹生產(chǎn)的制約因素,棗樹移栽機械化和自動化已成為農(nóng)民越來越迫切的要求。與小麥、水稻、玉米生產(chǎn)機械化發(fā)展速度相比,棗樹移栽機械化的發(fā)展比較緩慢。這種狀況與當前加快實現(xiàn)農(nóng)業(yè)現(xiàn)代化的形式要求不適應(yīng)。有關(guān)資料顯示,英國、法國、美國和日本等國在自動栽植機的研制方面均取得了很大的成績。我國從在20世紀60年代開始研制移栽機,初期主要用來移栽玉米和棉花等作物,我國在這方面的研究起步晚,技術(shù)進步緩慢,目前整體技術(shù)水平還較低。植樹造林方面的機械也是很少,我國于1953年開始引進移栽植樹機,在東北地區(qū)西部營造防護林。1960年開始設(shè)計和制造拖拉機牽引式半自動投苗植樹機。為了適應(yīng)沙區(qū)防風(fēng)固沙植樹造林的要求,國家不斷投資科研經(jīng)費來研制植樹機,2001年研制成功的深栽造林鉆孔機在我國西部、特別在干旱和半干旱地區(qū)造林具有廣闊和特殊的應(yīng)用前景。2001年填補我國機械化造林空白的新型液壓植樹機(JYZ-80)在內(nèi)蒙古達拉特旗白土梁林場研制成功并投入批量生產(chǎn)。這種植樹機由履帶式拖拉機牽引,采用液壓系統(tǒng)調(diào)節(jié)耕深,開溝深度隨意調(diào)節(jié),最大開溝深度為80cm,主要適用于沙區(qū)、荒漠地區(qū)栽植帶根苗、扦插苗、沙柳等。
我國的移栽技術(shù)剛剛處于起步試驗階段,目前仍以人工移栽為主。人工移栽難以實現(xiàn)大規(guī)模種栽植,從而導(dǎo)致生產(chǎn)規(guī)模小,生產(chǎn)效益低,不利于移栽技術(shù)的推廣。從長遠來看,機械化移栽可以實現(xiàn)育苗移栽一體化?,F(xiàn)階段我國移栽技術(shù)發(fā)展極不平衡。我國針對不同的果樹及其它作物分別研制了相應(yīng)的栽植機,由于栽植作業(yè)質(zhì)量與農(nóng)藝要求還有一定差距,未能大面積推廣。隨著林果業(yè)種植面積和生產(chǎn)規(guī)模的擴大,在有人工作業(yè)方式使用,已不能滿足林果產(chǎn)業(yè)化的步伐。我國在引進國外技術(shù)的基礎(chǔ)上開發(fā)自己的產(chǎn)品,以緩解勞動力緊張和提高生產(chǎn)效率。
在我國,棗樹的栽植具有季節(jié)性和區(qū)域性特點,機具作業(yè)時間短,單一性能機具的年使用率降低,因此在今后的設(shè)計中,應(yīng)盡量考慮一機多用的問題。具體要改進的措施:一是研制適用不同的土壤條件和工作條件的機具,二是設(shè)計通用機架,在更換其他工作部件后即可完成其他果樹林作業(yè)項目,提高其使用率。三是要考慮人—機的工程學(xué)原理,要讓人舒服,健康的工作,提高安全性能?,F(xiàn)在我們國家的技術(shù)還不夠成熟,好多還是借鑒他國的,單一的機械不能通用到其他地區(qū)的工作,有待機械多樣化,不僅能夠適用種植棗樹苗還要適用其他的樹種,更要發(fā)展到植樹造林的機械上一樣可以通用。種種的原因、地理位置及技術(shù)條件證明我們加大力度發(fā)展機械化勢在必行。
2、國外研究現(xiàn)狀及分析
世界上移栽技術(shù)發(fā)展較早的發(fā)達國家和地區(qū)主要是歐美和日本等國,該技術(shù)在早期主要應(yīng)用于蔬菜和經(jīng)濟作物的移栽,隨后逐步用于玉米等糧食作物的移栽。早在上世紀20 年代初期就開展了缽苗移栽的生產(chǎn)工藝研究,研制出結(jié)構(gòu)簡單的秧苗移栽機具,在一定程度上減輕了人工移栽勞動強度;到上世紀30 年代出現(xiàn)手工喂苗的移栽機械,移栽技術(shù)得到實質(zhì)性發(fā)展,使秧苗送入溝中這一過程實現(xiàn)機械化。上世紀50 年代開始,歐洲國家研制出不同結(jié)構(gòu)形式的半自動移栽機和制缽機;到了上世紀70 年代和80 年代,半自動移栽機在歐美、前蘇聯(lián)等農(nóng)業(yè)較發(fā)達的國家和地區(qū)得到廣泛應(yīng)用,使制缽、育苗、移栽技術(shù)有機結(jié)合。目前,國外的移栽技術(shù)已基本成熟,栽植后的農(nóng)作物達到農(nóng)藝要求,工作可靠性也較高。歐美一些農(nóng)業(yè)較發(fā)達的國家,如法國、德國、荷蘭、美國等國家,大部分的蔬菜生產(chǎn)和幾乎全部的大地花卉生產(chǎn)都采用育苗移栽種植模式和生產(chǎn)工藝。日本在20 世紀80 年代,90%的甜菜已實現(xiàn)移栽種植,移栽機自動化程度較高。從移栽機的工作過程看,這些農(nóng)業(yè)機械水平較高的國家多采用缽體苗半自動移栽機械,作業(yè)過程中采用人工喂苗,并根據(jù)作業(yè)對象的不同通過更換或調(diào)節(jié)栽植器來實現(xiàn)機械移栽,擴大機械移栽的作業(yè)范圍,提高其通用性。
三、任務(wù)要求及預(yù)期目標的可行性分析
任務(wù)要求
樹苗移栽的工藝過程主要包括開溝、送苗入溝、植苗和覆土壓實等工序。為了提高樹苗栽植后的成活率,樹苗移栽應(yīng)具有以下要求:
①栽植樹苗根系的栽植深度應(yīng)一致,并保持直散狀態(tài),避免前后左右彎曲。
②栽植樹苗的株距應(yīng)均勻一致,地上莖稈應(yīng)保持直立狀態(tài),前后傾斜不超過45°。
③栽植時開溝的深度、覆土質(zhì)量及壓實程度應(yīng)滿足農(nóng)藝要求。
④移栽機各部機構(gòu)在栽植過程中不應(yīng)損傷苗木。
栽植作業(yè)過程中,由于地形,土壤條件以及樹苗本身的差異性,樹苗的運動存在隨機誤差,影響栽植作用質(zhì)量。任務(wù)重點對送苗、開溝、覆土、打埂、鎮(zhèn)壓,及栽植過程中影響株距和秧苗直立狀態(tài)的主要因素進行研究分析,重點應(yīng)該在設(shè)計的送苗、開溝、覆土、打埂、鎮(zhèn)壓裝置機構(gòu)的設(shè)計上,對影響因素分析不應(yīng)該是主要的目的吧?。
預(yù)期目標的可行性分析
我國的移栽機的發(fā)展特點是起步晚、發(fā)展比較慢;在研制過程中農(nóng)機和農(nóng)藝難以有效結(jié)合;移栽機功能比較單一、通用性較差;沒有形成標準化、系列化、規(guī)格化;缺乏完善、科學(xué)的對移栽機標準和評價的方法;移栽成本依舊較高;作業(yè)穩(wěn)定性、可靠性等性能距發(fā)達農(nóng)業(yè)國家還有一定差距。
縱觀國內(nèi)外移栽機的發(fā)展和應(yīng)用情況,加上對各種不同類型移栽機的對比,總結(jié)未來移栽機的發(fā)展方向和趨勢:
(1)栽植質(zhì)量更加優(yōu)良。設(shè)計出的移栽機能夠具有更好的工作質(zhì)量、滿足農(nóng)藝要求、理想的栽植深度、直立度、較低的漏苗率和傷苗率等。
(2)栽植速度進一步提高。目前市場上的移栽機多數(shù)為半自動化機具,栽植速度受人工限制,勞動強度仍然較大,移栽機在解決好此類問題的同時能更好的適應(yīng)現(xiàn)代化農(nóng)業(yè)的要求。
(3)功能更加完善,機型更加齊全。目前多數(shù)移栽機僅具有單一的移栽功能,未來將集鋪膜、施肥、除草、鋪膜等多種功能于一體,并形成多機型、多系列的標準化產(chǎn)品。在移栽機的通用性方面也將進一步提高,通過局部的更換調(diào)整便能方便地實現(xiàn)不同作物及同一作物不同移栽苗的移栽,具有明顯的一機多用功能。
(4)機具的質(zhì)量更加可靠。隨著設(shè)計手段和加工制造技術(shù)的不斷提高,移栽機的零部件及裝配將
更加合理,降低機具的損壞率和返修率,保證移栽機的連續(xù)作業(yè)能力。
(5)設(shè)計的移栽機將更加合理。隨著人性化設(shè)計水平的不斷提高,在對移栽機進行設(shè)計過程中將更加注重移栽工作人員的作業(yè)姿勢和勞動強度,將人工作業(yè)勞動強度將至最低。
(6)農(nóng)機與農(nóng)藝結(jié)合的更加合理。農(nóng)藝將更適應(yīng)于農(nóng)機,農(nóng)機將更好地為農(nóng)藝服務(wù),實現(xiàn)農(nóng)機與農(nóng)藝的緊密結(jié)合。
綜上所述我認為小型果樹移栽機的要達到的預(yù)期任務(wù)要求(①栽植樹苗根系的栽植深度應(yīng)一致,并保持直散狀態(tài),避免前后左右彎曲。②栽植樹苗的株距應(yīng)均勻一致,地上莖稈應(yīng)保持直立狀態(tài),前后傾斜不超過45°。③栽植時開溝的深度、覆土質(zhì)量及壓實程度應(yīng)滿足農(nóng)藝要求。④移栽機各部機構(gòu)在栽植過程中不應(yīng)損傷苗木)及實現(xiàn)對送苗、開溝、覆土、打埂、鎮(zhèn)壓應(yīng)該是切實可行的。其實現(xiàn)過程應(yīng)該是一個綜合的過程,它應(yīng)該有開溝裝置,覆土裝置,動力裝置以及實現(xiàn)其功能的其他裝置。
四、本課題需要重點研究的、關(guān)鍵的問題及解決的思路
本課題重點研究棗樹果苗的挖掘,移栽,運送,栽培,其關(guān)鍵的問題就是移栽機構(gòu)的設(shè)計及其他輔助機構(gòu)的設(shè)計。具體的解決的思路如下:查找相關(guān)資料進行方案的確定,進行機構(gòu)的構(gòu)想和可行性分析,最后做出總體設(shè)計。
五、工作條件及解決方法
(1)萬方數(shù)據(jù)庫和圖書館查閱相關(guān)資料,了解紅棗移栽機機及移栽機行業(yè)的發(fā)展現(xiàn)狀。
(2)從了解的信息中確定設(shè)計方案。
(3)查閱相關(guān)資料,了解移栽機構(gòu),以確定方案中所需的移栽機構(gòu)。
(4) 遇到關(guān)鍵性的問題向老師請教
?。?)畫出裝配圖。利用AutoCAD軟件繪制二維裝配圖和零件圖。
?。?)參考資料中的計算方法及公式等進行計算校核。
六、完成本課題的工作方案及進度計劃
擬定工作進度
第1周—第2周 通過查找文獻資料,了解國內(nèi)外現(xiàn)狀。
第2周—第5周 設(shè)計總體方案。
第6周—第9周 結(jié)構(gòu)進行具體設(shè)計。
第10周—第12周 撰寫設(shè)計說明書,對部分問題修改、調(diào)整。
第13周—第14周 整理資料準備答辯。
七、主要參考文獻
[1]湯智輝,賈首星.兵團林果業(yè)機械化現(xiàn)狀與發(fā)展[J].農(nóng)機化研究,2008(11):5—8.
[2]劉磊,陳永成.兵團移栽技術(shù)的應(yīng)用與發(fā)展概況[J].農(nóng)機化研究,2008(9):240—241.
[3]金誠謙.鏈夾式移栽機栽植作業(yè)質(zhì)量影響因素分析[N].農(nóng)業(yè)機械學(xué)報,2008(8):196—198.
[4]宋代平.生態(tài)植樹機動態(tài)性能的理論研究.東北林業(yè)大學(xué)碩士論文[C].2004(9):1—105.
[5]于建國,屈錦衛(wèi).國內(nèi)外挖坑機的研究現(xiàn)狀及發(fā)展趨勢[J].農(nóng)機化,2007 (1):56—57.
[6] 何新川,差心玲,邵艷英.多功能果樹開溝、打埂、破埂機[J].農(nóng)機化,2007﹙1﹚:54.
[7] 李志鑫,陳風(fēng),王維新. 國內(nèi)移栽機具發(fā)展現(xiàn)狀[J].農(nóng)機化,2004(2):32
[8]盧勇濤,李亞雄,劉洋,李斌,王濤. 國內(nèi)外移栽機及移栽技術(shù)現(xiàn)狀分析[C]. 農(nóng)機化,2011(4):1
[9]徐金蘇,趙勻. 基于ADAMS和ANSYS的辣椒移栽機構(gòu)的力學(xué)仿真與應(yīng)力分析[N]. 浙江理工大學(xué)學(xué)報,2009(9):第26卷
[10]武科,陳永成,畢新勝.幾種典型的移栽機[C]. 農(nóng)機化,2009(3):12
學(xué)生簽名
年 月 日
指導(dǎo)教師審閱意見
指導(dǎo)教師簽名
年 月 日
河北建筑工程學(xué)院
畢業(yè)設(shè)計(論文)外文資料翻譯
系別: 機械工程系
專業(yè): 機械設(shè)計制造及其自動化
班級: 機094
姓名: 楊東勝
學(xué)號: 2009307413
外文出處: www.elsevier.com/locate/jterra
(用外文寫)
附 件:1、外文原文;2、外文資料翻譯譯文。
指導(dǎo)教師評語:
簽字:
年 月 日
1、 外文原文(復(fù)印件)
2、外文資料翻譯譯文
譯文標題(3號黑體,居中)
××××××××(小4號宋體,1.5倍行距)××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××…………。(要求不少于3000漢字)
第 19 頁 共 19 頁
利用DEM法對挖掘機鏟斗填充進行數(shù)值模擬
C.J. Coetzee *, D.N.J. Els
斯坦陵布什大學(xué)機械與機電工程系
專用郵袋x1,Matieland(馬鐵蘭德)7602號,南非
2007年2月15號收到;2009年2月25號收到修改稿;2009年5月28可接受
在線可見2009年6月25號
摘要
挖掘機的鏟斗填充是一個復(fù)雜的顆粒流問題。為了優(yōu)化填充過程,了解參與的不同機制很重要。離散單元法(DEM)是一種很有前途的實現(xiàn)模型間的土壤行動的方法,它用于本研究中模型的挖掘機斗填充過程。模型的驗證是基于該模型的斗阻力和不同的流動區(qū)域的發(fā)展預(yù)測結(jié)果的精度。與實驗測量方法相比,DEM預(yù)測的挖掘阻力較小,但總的趨勢是準確地模擬。在填充過程結(jié)束時的誤差在預(yù)測的阻力為20%。定性,有觀察和建模流區(qū)域之間的一個很好的協(xié)議條款位置和從一個階段到其他過渡。在填充的所有階段,DEM能夠準確地預(yù)測材料體積在±6%鏟斗內(nèi)。
2009 ISTVS。由Elsevier公司出版。保留所有權(quán)利。
1簡介
土方工程設(shè)備在農(nóng)業(yè),土方工程和采礦業(yè)中起著重要的作用。設(shè)備在形態(tài)和功能上是高度多樣化的,但大多數(shù)土壤的切割機可分到一個三大類,即葉片,松土機(撕裂者)和水桶(鏟斗)。本文重點研究用離散元方法(DEM)進行挖掘機鏟斗填充的數(shù)值模擬。
在許多土方機械上均可發(fā)現(xiàn)鏟斗。挖掘機是用來去除覆蓋在露天礦山的超載荷。它的去除作業(yè)使得在挖掘的煤礦床暴露出來。拉索是類似于起重機的一種結(jié)構(gòu),它有一個通過鋼絲繩以懸浮的體積至多可達100 m3的巨大的鏟斗。挖掘機是礦井操作中的一個十分重要的部分,在南非礦山企業(yè)競爭力中發(fā)揮重要的作用。人們通常認為:在煤炭開采行業(yè)挖掘機效率提高1%會使得每臺挖掘機的年產(chǎn)量提高1百萬[ 1 ]。鏟斗還可用在液壓挖掘機,裝載機,鏟挖掘機。
鏟斗的填充是一個復(fù)雜的顆粒流問題。用以測量填充的現(xiàn)場設(shè)備的儀表是困難和昂貴的。使用小規(guī)模(通常是1 /10規(guī)模)的實驗鉆機來評估桶設(shè)計[1,2]是可行的,但它們是昂貴的而且在有關(guān)于縮放[ 3,4 ]的有效性上存在問題。由于沒有通用的標度律顆粒流以及流體動力學(xué)[ 5 ],擴大模型試驗的結(jié)果是有問題的。
根據(jù)克利里[ 5 ],在沒有非常大的巖石時,鏟斗的填充可以視為相對地在橫向方向上幾乎不運動的二維點運動。在拖動方向沿鏟斗的橫截面的流動模式是填充的最重要的方面,它可以使用二維模型較為滿意的分析。根據(jù)拉鏟挖土機的鏟斗填充實驗羅蘭[ 2 ]可以得到類似的觀點。
根據(jù)Hawkins等人[ 6 ],在實際情況下,當涉及到運動的鏟斗或推土機刀片時,平面應(yīng)變條件只適用于某些變形運動區(qū)。這樣的工具的平面應(yīng)變的解決方案僅僅可以假設(shè)到有限精度。Hawkins等人[ 6 ]同樣研究了平面應(yīng)變假說:在土壤箱那里的土壤和刀具運動受到兩個透明的墻之間的約束。用于測量這樣一個鏟斗時,由于土壤和側(cè)壁之間的摩擦作用在刀具上的力必須估計到或忽略。他們發(fā)現(xiàn)在鏟斗上有大量的斗齒,但這些斗齒不作為單獨的三維物體,而是作為幾個模型的一個廣泛的的工具。在這樣的組件的牙齒前面的變形模式被認為是平面應(yīng)變變形。然而,作者認為,這只適用于特定的粘性土(砂土)而且或許不適用于其他(特別是巖石及脆性)的材質(zhì)。在這項研究中鏟斗有全寬的邊緣沒有斗齒而且基于Hawkins等人的發(fā)現(xiàn)。[ 6 ]。平面應(yīng)變假設(shè)了兩個維度并且采用三維DEM模型。
分析方法[7–11 ]用于模型的土壤–刀具間的運動是有限的無窮小運動和工具給定的幾何問題。這些方法預(yù)計不能夠得到有效的后續(xù)分析階段的進展的分析土壤挖掘問題。[ 12 ]試驗方法是基于太沙基的被動土壓力的一個初步的土體破壞模式的理論和假設(shè)[ 13 ]。復(fù)雜刀具的幾何形狀(如鏟斗)和大變形不能使用這些方法[ 14 ]模擬。
離散單元法是一種很有前途的方法,可以通過對模型與土壤的相互作用解決一些困難(問題)。分析方法[ 15 ]。在DEM,失效模式和材料變形是不需要提前的。該工具是使用多個平壁塑造(模擬)成的而刀具的幾何形狀的復(fù)雜性不會使DEM模型變得復(fù)雜。在大粒狀材料的變形和發(fā)展的粒狀材料的自由表面是由這種方法自動控制的。
克利里[ 5 ]利用DEM建模拖桶灌裝。趨勢顯示和定性的比較,但給出的實驗的結(jié)果沒有出現(xiàn)。液壓挖掘機鏟斗的填充的過程由Hawkins和澤波夫斯基[ 12 ] 以試驗形式表現(xiàn)出來。他們研究的目的是優(yōu)化挖掘工藝及鏟斗軌跡。結(jié)果表明,最節(jié)能的鏟斗是一個推動作用最小化的背墻。Owen et al。[ 21 ]模擬3D挖掘機的鏟斗填充。用這種方法,鏟斗由有限元方法和DEM的土壤建模。成群的橢球被用來近似的粒子棱角。斗按照預(yù)定的路線運動
Esterhuyse [ 1 ]和羅蘭茲 [ 2 ]研究了標拖鏟斗實驗的填充行為,其重點在于安裝配置,鏟斗外形及齒間距。他們發(fā)現(xiàn)鏟斗的縱橫比(寬度比深度)在用以填充鏟斗的拖動距離起了重要的作用。他們發(fā)現(xiàn)用最短的填充距離產(chǎn)生拖曳力的最高的峰值。
本研究的主要目的是為了證明DEM預(yù)測鏟斗上的拖拽力和隨鏟斗填充而發(fā)展的材料的流動模式的能力。DEM結(jié)果與每—土槽的形成實驗相比較。
2。離散元方法
離散元方法(DEM)基于模擬作為單獨組分的顆粒物質(zhì)的運動。DEM一開始由庫德爾和施特拉克[ 16 ]應(yīng)用于巖石力學(xué)。在這項研究中,所有的模擬都是二維的而且通過商業(yè)DEM軟件PFC2D [ 17 ]運行。
一個線性接觸模型用一個彈簧剛度kn在正常的方向和彈簧剛度ks剪切方向(如圖1所示)。摩擦滑動是在切線允許的方向的摩擦系數(shù)。作用在在相反方向的阻力(摩擦力)與合力成正比及一個顆粒比例常數(shù)(阻尼系數(shù))C [ 17 ]。想要了解DEM的詳細描述,讀者可以參考克利里和Sawley(薩利) [ 18 ],庫德爾和施特拉克 [ 16 ],霍格[ 19 ]以及張和懷恩的 [ 20 ]。
3。實驗
兩個平行的玻璃板,間隔200毫米分開固定形成土槽。這種鏟斗形固定小車
是由滾珠絲杠、步進電機驅(qū)動的。
圖1。DEM接觸模型。
圖2 a
圖2 實驗裝置
這套完整的裝置可以設(shè)置在一個圖2 a所示的水平的角度。第一臂進行旋轉(zhuǎn)和固定因此這兩個臂保持垂直。第二臂在垂直方向保持自由的移動。首先,在(圖2a)位置A添加平衡重量以實現(xiàn)在鏟斗和第二個臂組件權(quán)重的平衡。這導(dǎo)致了一個“'weightless“(失重的或無重力的)鏟斗。然后在位置B加配重來設(shè)置 “有效”桶的重量。由于臂2總是垂直,即使鉆機角度不是零度,有效的斗重量總是作用垂直向下(圖2C)。重量為49.1 N,93.2 N,138.3 N和202.1 N的斗常被使用。
當鏟斗按照預(yù)定方向拖動時,由于有效鏟斗的重量和作用在顆粒上的力,它也可以在垂直方向自由移動。鏟斗的底部邊緣總是設(shè)置為平行于拖動方向和材料的自由表面。這種類型的運動類似于一個拉鏟挖土機的鏟斗,由一組繩拖在拖動方向,但在所有其他方向的運動是自由的[ 2 ]。
彈簧加載的聚四氟乙烯刮用于密封的小鏟斗和玻璃板之間的開口。一個力傳感器被設(shè)計和建造來測量作用在斗上的阻力。一套應(yīng)變計粘貼到如圖2a所示的鋼束位置。四集的應(yīng)變計是用于測量在拖動方向的力。其他成分的力不測量。力傳感器的標定和校準的定期檢查,避免在測量方法漂移。鉆機的角度不是零,在拖動開始前力傳感器為零。這種用于鏟斗填充重量組分的補償表現(xiàn)在拖動方向上。鏟斗的垂直位移測量由一個線性可變差動變壓器(LVDT)確定并且作為DEM模擬量的一個輸入量。在實驗及DEM模擬狀態(tài)下鏟斗均給定一個10毫米每秒的速度。鏟斗形狀及尺寸在圖2b所示。
本研究采用玉米粒。雖然玉米粒不是實際的土壤,但是羅蘭[ 2 ]發(fā)現(xiàn)種子顆粒是適合實驗測試而且像自然土壤流入鏟斗那樣緊密。
4。DEM參數(shù)和數(shù)值模型
圖3顯示測量的晶粒尺寸的范圍和等效DEM晶粒。正態(tài)分布在尺寸范圍被用來創(chuàng)建成群的粒子。通過加入兩個或兩個以上的顆粒(在3D的2D和球盤)可以形成團塊,在一起形成一個剛性粒子,即粒子包括在叢保持固定距離彼此 [17]。一叢內(nèi)顆??梢灾丿B的任何程度的影響和接觸力之間是沒有這些粒子產(chǎn)生克萊斯。在模擬無論作用于他們的力是多大簇不能打破。模型中20000–30000的成群粒子被使用。
圖3(a)物理晶粒尺寸和(b)DEM晶粒模型尺寸(mm)。
校準過程,在另一篇文章,是開發(fā)的無粘性材料。顆粒大小,形狀及密度是從物理測量和確定的。實驗室試驗和壓縮試驗分別用以確定材料的內(nèi)摩擦角及剛度。這些測試都重復(fù)利用不同的DEM模型顆粒摩擦系數(shù)的數(shù)值及剛度值。變形試驗和壓縮試驗的結(jié)果可以確定一個獨特的顆粒摩擦顆粒剛度值,表1。
表1
粒子性能參數(shù)摘要和DEM。
宏觀性能 測量 DEM
內(nèi)摩擦角 23 24
休止角 25±2 24±1
堆積密度 778千克每立方米 778千克每立方米
密閉的體積彈性模量 1.60 MPa 1.52 MPa
鋼性摩擦材料14 14
校準的DEM的特性
顆粒剛度,KN = KS 450 kN / m
粒子密度,QP 855千克每立方米
顆粒摩擦系數(shù),L 0.12
其他性能
阻尼, C 0.2
模型寬度0.2米
在軟件PFC2D,所謂的墻,用來建立結(jié)構(gòu)。該試驗臺及鏟斗,同尺寸與實驗,建立了墻。壁是剛性的并且按照規(guī)定的速度做平移和旋轉(zhuǎn)運動。作用在墻壁上的力和彎矩不影響墻壁的運動。在實驗過程中持續(xù)不斷的10毫米每秒的速度被應(yīng)用當測定垂直位移時。豎向位移由兩臺的角度和有效的鏟斗的重量的影響。一個典型的結(jié)果如圖4所示。除了最初的過渡,垂直速度幾乎是恒定的,對于一個給定的安裝程序,并且伴隨著鏟斗的重量增加。在DEM模型中,牽引速度為10毫米每秒而且測量的垂直位移被數(shù)據(jù)文件讀取并且應(yīng)用于鏟斗。
圖4 鉆機角度為10度時測量的斗的垂直位移和
四組有效鏟斗的重量值
建立在PFC2D的標準函數(shù)用來獲取作用于單獨的墻壁和鏟斗上的作為一個整體的力及彎矩。鉆機角度不為零,鉆機是保持水平但重力的組分進行了相應(yīng)的設(shè)置。
5。結(jié)果與討論
當涉及到流動模式時,很難進行定量的比較。然而當比較材料的自由表面時,一些比較還是可以做的。圖5和6顯示材料是如何分別在鉆機角度為h = 0_ and h = 20_流入鏟斗的。當比較材料的自由表面的形狀時,仿真能預(yù)測在填充初期的一般形狀。但模擬未能準確地預(yù)測材料的自由表面在最后階段的填充。
圖5鉆機角度為0度時的填充結(jié)果 圖6鉆機角度為20度時的填充結(jié)果
曲線進行擬合實驗的自由表面和覆蓋在圖的數(shù)值結(jié)果如圖5和6所示。兩個自由表面之間(堆高度)最大的差異是沿垂直的方向在拖動方向上測量得到。兩個測量,一在DEM的預(yù)測較高的堆高度,和一個測量在DEM的預(yù)測較低的堆高度。數(shù)值和測定的位置的數(shù)據(jù)可以在圖中顯示。以虛粒子尺寸為10 mm為例, DEM準確地預(yù)測堆高度在1.5–4.5顆粒粒徑。
圖新!為您提供類似表述,查看示例用法:
分享到
翻譯結(jié)果重試
抱歉,系統(tǒng)響應(yīng)超時,請稍后再試
· 支持中英、中日在線互譯
· 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可
· 提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗更加流暢
7顯示了從試驗及模擬得到的典型的阻力結(jié)果。在大多數(shù)情況下,在開始的實驗中觀察到大的阻力跳躍是無法解釋的,并且需要進一步的調(diào)查研究。從這個結(jié)果來看,很明顯,DEM模型捕獲到阻力的一般趨勢,但它的預(yù)測值與實測值相比較低。超過800毫米的完整的阻力時,該模型預(yù)測力低于測量力15–50 N。終端(最后)阻力的誤差為20%。聚四氟乙烯刮和玻璃板電極之間的摩擦力在無谷粒的情況下測定。這種摩擦力是從測得的阻力提取的。谷物和側(cè)面板之間的摩擦力對測量的結(jié)果也有影響。這些摩擦力2D DEM模型是不可測量的或包含而這可能是該模型預(yù)測的阻力較低的原因[ 6 ]。
圖7 在鉆機角為10度和鏟斗重量為WB = 138.3N時 的典型的鏟斗拖動力。
阻力的能量被定義為在力–位移曲線下阻力的面積。利用不同的鉆機角和有效的桶重量WB,阻力能e700至多到700毫米的位移在圖8中可以比較。
圖8不同的鉆機角度下斗阻力能E700關(guān)于斗的重量Wb的函數(shù)
第一次觀察,我發(fā)現(xiàn),對于一個給定的鉆機角度,增加有效鏟斗的重量,所需的拖力能量呈線性增加。一個相近的調(diào)查顯示,在鏟斗的重量增加時,斗被迫進入材料更深,這與用較少的量桶相比,導(dǎo)致了較高的阻力。
第二次觀察,可以是隨著鉆機角增大,有阻力的能量減少。有效的鏟斗的重量WB總是作用在垂直向下的方向(圖2C),因此使鏟斗進入材料的正常的推力由WB與鉆機角度的余弦值的乘積給定。因此,隨著在鉆機角的增加,推動鏟斗進入材料的正常的力在減少。與使用一個較低的鉆機角相比,這導(dǎo)致了阻力在減少,從而阻力能量減少。DEM模擬能夠捕捉到一般的趨勢,但它預(yù)測的阻力能量低于測量。預(yù)測阻力太低,這種情況的原因是,由于排除谷物與玻璃面板之間的摩擦力。它會,然而,仍然可以使用的模擬結(jié)果對充填進行定量優(yōu)化。
利用仿真結(jié)果可以確定施加在鏟斗的每個部分(區(qū)域)的力有多少。圖9鏟斗分為六部分。該圖表表明,每一部分的力占總阻力的比例。從一開始為200毫米的位移(25%的總位移)總力作用主要在邊緣和底部區(qū)域。隨著材料開始流入鏟斗,其他部分發(fā)生作用,首先是內(nèi)曲線最后是前部。小于5%的力作用在頂部。這遠小于底部(30%)。這樣情況的原因是,鏟斗內(nèi)的材料相對斗幾乎不顯示運動而且在頂部的壓力僅取決于鏟斗內(nèi)的材料的重量。而在底部,壓力是由斗內(nèi)材料的重量及斗本身的重量組合的重量確定。在整個填充過程20–30%的拖曳力作用在邊緣上。這表明,邊緣和斗齒的設(shè)計是很重要的。眾所周知影響充填因素中邊緣/齒的長度和攻擊的角度是非常重要的[ 2 ]。
圖9 鉆機角度為10度時鏟斗阻力的分配
羅蘭[ 2 ]利用小米,豌豆和他在2D試驗臺的玉米混合物。填充行為的觀察導(dǎo)致描述流量特性和模式的物質(zhì)進入斗理論的發(fā)展。羅蘭[ 2 ]將這一概念命名為剪切帶理論。他觀察到一定的剪切平面(斷裂)在不同的物料運動的政權(quán)之間形成。這些剪切面改變方向和位置取決于初始安裝和在填充的不同階段過程本身。廣義的原理如圖10所示。不同的流動區(qū)域,如羅蘭茲[ 2 ]命名,在圖上是不可或缺的。該材料對斗的相對運動是由箭頭表示。
圖10根據(jù)羅蘭茲[ 2 ]得出的剪切帶理論。
原始材料仍是原狀直到最后的第三層的阻力在'推土”發(fā)生時。最初的層流流入鏟斗中在第一第三的阻力之間(圖10a)。加入一定的距離后,該層未在鏟斗邊緣,隨后成為固定的與斗相關(guān)的其余的阻力(圖10B和C)。因為增加的引力援助在陡峭的阻力角度,材料更加迅速地朝后流動。這種效應(yīng)可以通過對比圖5和6看出。
成為固定的之后,一個新的區(qū)域,主動流區(qū),發(fā)展起來了(圖10)。在這個區(qū)域,該材料的位移主要是在垂直方向。積極挖掘區(qū)(主動流區(qū))位于齒和斗邊緣之上。當材料開始進入鏟斗和及層流層失敗尺寸增加后這個區(qū)域發(fā)展起來。在這個區(qū),原始材料的失敗要么流入鏟斗為層流層的部分在第一部分的填充或移動到活動流程區(qū)在后一部分填充。
在主動流動區(qū)從“實況”材料造成的恒載增加,并在最初的層流層之上。在最初的層流層的一些材料失敗并開始形成的恒載的部分(圖10C)。在實驗中,當材料流動時,可以觀察到明確的斷裂或剪切線。隨著拖動角增大,積極挖掘區(qū)和活躍流區(qū)往往加入到一個連續(xù)的帶。
應(yīng)當指出的是,圖10僅僅顯示填充過程的三個階段,但在現(xiàn)實中從一個階段到下一個階段有一個漸進的轉(zhuǎn)變。還應(yīng)注意的是這是一個廣義的理論,嘗試使用不同的材料和斗幾何形狀時結(jié)果會有變化。在實驗過程中可以觀察到兩個明顯的切變線。一個擴展的尖端邊緣上的自由表面。這被命名名為切削線。第二條線是在最初的層流與恒載層之間,稱為恒載剪切線。
利用DEM和進一步的流動區(qū)域的調(diào)查,設(shè)計出下面的程序步驟。材料流經(jīng)斗并且每運動100mm之后'暫?!?。 在斗給定了一個進一步的10–15毫米位移(1–3粒長度)之后,然后每個粒子的位移矢量設(shè)置為零。顆粒位移比PDR的比率被定義為粒子的絕對位移向量的大小與斗的絕對位移矢量的大小之比。然后根據(jù)顆粒各自的PDR值上色。一個PDR等式意味著評價顆粒與鏟斗運動。結(jié)果顯示在圖11。這實際上是在一個短周期的平均的速度比。
圖11 用鏟斗質(zhì)點位移比得到的流動區(qū)
由剪切帶理論預(yù)測的流動制度顯示在圖上。三圖片對應(yīng)圖10給出的三幅圖。在100毫米位移之后,積極挖掘區(qū)清晰可見PDR在0.40到0.65之間。最初的層流層以PDR0.10到0.2移動到鏟斗5。這相當于在圖10a所示的流動區(qū)。
500毫米后,積極流區(qū)的“V”形特征可以看到PDR在0.10到0.2。雖然PDR是相對較低的值,位移主要在垂直方向。積極挖掘區(qū)仍然存在于在鏟斗的后面,最初的層流層開始變得相對固定對于鏟斗而言。這是由PDR值增加可見鏟斗的后面。這與圖10B顯示的流區(qū)相當吻合。
在800毫米之后,恒載荷切變線的存在清晰可見。與圖10c比較,活動流程區(qū)和主動挖掘帶不能從靜載荷區(qū)分。這樣做的原因是,在一個鏟斗位移為800毫米時,推土作用大,超過其他流動區(qū)域的陰影區(qū)域。
就力和能量要求和周期時間而言挖掘機鏟斗的優(yōu)化是非常重要的。在一些應(yīng)用中,這將有利于利用最少的能量填充鏟斗。在其他的應(yīng)用,這將有利于填充鏟斗時盡可能地快以盡可能減少周期時間[ 1 ]。探討填充率時,應(yīng)從實驗被取用的不同的填充的階段圖像,數(shù)字化的輪廓,及斗內(nèi)材料體積計算并表示為最大鏟斗容積百分比。最大斗容0.0146 立方米定義在圖2b。利用DEM的結(jié)果,按照同樣的步驟然后比較結(jié)果。
圖12顯示了使用三個不同鉆機角度的實驗結(jié)果。以在鏟斗斗位移長度為橫坐標,鏟斗填充百分比為縱坐標作圖。在挖掘機行業(yè),目標是讓鏟斗完全填充2–3鏟斗的長度。隨著鉆機角度由0度增加10度,在填充的最后階段填充百分比有輕微的增加。事實上,這是由于當材料受到干擾時,它流動到鏟斗更加容易。當鉆機的角度進一步增加到20度時,然而,填充百分比在下降。進一步的研究調(diào)查表明,鉆機角的增加,鏟斗到材料的位移減少。實驗已經(jīng)表明,垂直于材料的力表面是由有效鏟斗重量與鉆機角余弦值乘積給定。因此,隨著鉆機的角增加,迫使斗挖掘的分力減小。當這個分力減小時,斗穿透材料的深度減少并且鏟斗掘起較少的材料。當斗掘起的材料減少時,填充百分比在減少。
圖12不同鉆機角度下鏟斗填充率關(guān)于斗位移的函數(shù)
實驗和DEM填充百分比比較是在圖13概述。使用三個不同的鉆機角度0度,10度,30度和兩個有效的斗權(quán)重WB = 49.1 N和138.3 N,填充率在位移為100,200,300,400, 500,600和700毫米計算。42個數(shù)據(jù)點的繪制而兩線表明,在所有情況下,除了兩個,DEM的結(jié)果均在±6%的實驗結(jié)果以內(nèi)。
圖13。實驗和DEM的填充百分比的比較。
在實踐中,斗脫產(chǎn)時鏟斗轉(zhuǎn)動以阻止大多數(shù)材料脫落。這一原則在圖14描述出來,在它的位移結(jié)束時,鏟斗被抬出材料并且保持在鉆機角度。鏟斗定位的效果顯,影響著鏟斗持有的材料的數(shù)量。再次,實驗的自由表面輪廓在DEM的結(jié)果表示出來并且與角度為0時吻合良好。至于角度為20度時,DEM模型預(yù)測在鏟斗的后面有額外的材料,這可以由圖6的位移為800毫米時在最后填充狀態(tài)的差異來解釋。
6。結(jié)論
本文的主要目的是為了證明離散元方法如何可以準確地預(yù)測挖掘機鏟斗填充過程。原料進入料桶的流動模式,由于材料的相互作用而產(chǎn)生的作用在斗上的阻力,能量要求和桶填充率都需要與實驗觀察及測量進行比較。這項研究僅限于粒狀材料和二維模型。
本文的結(jié)論是:
1。比較材料的自由表面,DEM可以精確地模擬填充的初始階段材料流到桶中的情形。然而,在填充的較為靠后的階段,DEM,無法準確地預(yù)測材料的自由表面。
2。DEM可以準確地預(yù)測在桶中拖曳力的總趨勢。在800 mm的完整的阻力DEM預(yù)測阻力低于測量值15–50 N。測得的最大阻力250 N,然而DEM預(yù)測最大牽引力200 N。
3。DEM無法準確預(yù)測阻力的能量。然而它的總的趨勢是正確的,它表明,拖動能量隨著桶的重量的增加呈線性增加。
4?;贒EM的結(jié)果,在20%和30%之間的總斗力作用在邊緣。當前的實驗裝置無法驗證這些。
5。DEM結(jié)果與剪切能帶理論表現(xiàn)出許多相似之處?;诙ㄐ员容^,DEM可以預(yù)測的初始層的位置,積極挖掘區(qū),主動流動區(qū)和靜載荷。
6。DEM模型,通過采用不同的角度和斗重,能夠準確地預(yù)測材料的體積±6%桶(鏟斗)內(nèi)。
摘要
挖掘機的鏟斗填充是一個復(fù)雜的顆粒流問題。為了優(yōu)化灌裝過程,重要的是在了解參與的不同機制。離散單元法(DEM)是一種很有前途的實現(xiàn)模型間的土壤行動的方法,它用于本研究中模型的挖掘機斗灌裝過程。模型的驗證是基于。該模型的斗阻力和不同的流動區(qū)域的發(fā)展預(yù)測結(jié)果的精度。與實驗測量方法相比,DEM預(yù)測的挖掘阻力較小,但總的趨勢是準確地模擬。在填充過程結(jié)束時的誤差在預(yù)測的阻力為20%。定性,有觀察和建模流區(qū)域之間的一個很好的協(xié)議條款位置和從一個階段到其他過渡。在填充的所有階段,DEM能夠準確地預(yù)測材料體積在±6%桶內(nèi)。
2009 ISTVS。由Elsevier公司出版。保留所有權(quán)利。
1簡介
土方工程設(shè)備在農(nóng)業(yè),土方工程和采礦業(yè)中起著重要的作用。設(shè)備在形態(tài)和功能是高度多樣化的,但大多數(shù)土壤的切割機可分到一個三大類,即葉片,幼蟲和水桶(鏟)。本文重點研究用離散元方法(DEM)進行挖掘機鏟斗填充的數(shù)值模擬。在許多土方機械上可以發(fā)現(xiàn)桶。挖掘機是用來去除覆蓋的抨擊
露天礦山。去除暴露的煤礦床
在挖掘。拉索是起重機的一種結(jié)構(gòu)
以高達100的懸浮m3in體積巨大的鏟斗
通過鋼絲繩。挖掘機是一種昂貴的和本質(zhì)的部分
我的操作和在COM中發(fā)揮重要的作用—
南非礦山企業(yè)競爭力。在煤炭開采
行業(yè)通常被認為是提高1%
在拉索效率會導(dǎo)致1百萬
在每拖[ 1 ]年產(chǎn)量提高。桶
還對液壓挖掘機,裝載機鏟
挖掘機。
一桶灌裝是一個復(fù)雜的顆粒流問題—
lem。測量的現(xiàn)場設(shè)備的儀表
充填是困難和昂貴的。這是可能的
使用小規(guī)模(通常是1 /第十規(guī)模)的實驗鉆機
評估桶設(shè)計[1,2],但它們是昂貴的和
有關(guān)于縮放[ 3,4 ]的有效性問題。
擴大從模型試驗的結(jié)果是有問題的
由于沒有通用的標度律顆粒流
有流體動力學(xué)[ 5 ]。
根據(jù)克利里[ 5 ]桶的填充,在
沒有非常大的巖石,被觀察到的比較
在橫向方向上的二維點運動—
和灰。沿桶的橫截面的流動模式
拖動方向最重要的方面是填充
可以使用二維滿意的分析
模型。羅蘭[ 2 ]提出了類似的意見的基礎(chǔ)上的
拉鏟挖土機的鏟斗填充實驗。
根據(jù)Hawkins等人。[ 6 ],在實際情況下
當運動的桶或推土機刀片DIS—
討論了平面應(yīng)變條件下,只適用于某些變形—
運動區(qū)。這樣的工具的平面應(yīng)變的解決方案
可以假設(shè)只有有限精度。Hawkins
0022-4898 \ / 36美元嗎?2009 ISTVS。出版由Elsevier公司保留所有權(quán)利。
10.1016 / j.jterra.2009.05.003 DOI:
*通訊作者。電話:+ 27 21 808 4239;傳真:+ 27 21 808 4958。
電子郵件地址:ccoetzee@sun.ac.za(C.J. Coetzee)。
www.elsevier。COM \ / \ / jterra定位
在www.sciencedirect.com在線
地面力學(xué)雜志46(2009)217–227
雜志
的
地面力學(xué)
等人。[ 6 ]研究了平面應(yīng)變假定
土壤箱那里的土壤和刀具運動
兩個透明的墻之間的約束。用于測量—
在這樣一個桶中,作用在工具由于
土壤和側(cè)壁之間的摩擦來估計—
交配或忽視。他們發(fā)現(xiàn)一個大數(shù)—
誤碼率的牙齒上的桶,牙齒不作為單獨的
但作為一個廣泛的三維物體的工具了
從幾個模塊。在前面的變形模式
這樣的組件的牙齒被認為是平面應(yīng)變
變形。然而,作者認為,本
對特定的粘性土(砂土)和
或許不適用于其他(特別是巖石脆)的伴侶—
里亞爾。在這項研究中斗有全寬唇?jīng)]有
牙齒和基于Hawkins等人的發(fā)現(xiàn)。6。
平面應(yīng)變假設(shè)了兩個維度—
采用三維DEM模型。
分析方法[ 11 ] 7–用于模型的土壤–工具間—
行動是有限的無窮小運動和工具
給定的幾何問題。這些方法
預(yù)計不能夠得到有效的后續(xù)分析
階段的進展的分析—
試驗方法是基于太沙基的被動土壓力
一個初步的土體破壞模式的理論和假設(shè)
13。復(fù)雜刀具的幾何形狀(如桶)和大
變形不能被模擬使用這些方法[ 14 ]。
離散單元法是一種很有前途的方法
模型與土壤相互作用可以通過—
會遇到一些困難的分析
方法[ 15 ]。在DEM,失效模式和材料
變形是不需要提前。該工具是國防部—
使用多個平壁而歡呼的復(fù)雜性
刀具的幾何形狀不復(fù)雜的DEM模型。大
在粒狀材料的變形和發(fā)展
的粒狀材料的自由表面自動漢—
等的方法。
克利里[ 5 ]利用DEM建模拖桶灌裝。
趨勢顯示和定性的比較,但
給出了實驗的結(jié)果沒有。的過程中
液壓挖掘機鏟斗的充盈的影響試驗—
精神上Hawkins和澤波夫斯基[ 12 ]。目的
他們的研究是挖掘過程優(yōu)化
鏟斗軌跡。結(jié)果表明,最節(jié)能
桶是一個背墻的推動作用,在哪里
最小化。owenetal。[ 21 ] modelled3ddraglinebucketfill—
ING。在那里,桶與建模
有限元方法和DEM的土壤。橢球
成群的球被用來近似的粒子
棱角。斗按部就班。
esterhuyse [ 1 ]和[ 2 ]研究了填充羅蘭茲
標拖桶實驗的行為
安裝配置的重點,桶形齒
間距。他們發(fā)現(xiàn)的縱橫比
桶(寬度,深度)起了重要的作用
拖動需要填補一個桶的距離。用桶
短填充的距離被發(fā)現(xiàn)產(chǎn)生的最高的峰值
拖曳力。
本研究的主要目的是為了證明
數(shù)字高程模型的預(yù)測能力上的曳力桶
材料的流動模式,發(fā)展為桶填充
起來。DEM結(jié)果進行實驗,每—
在土槽的形成。
2。離散元方法
離散元方法是基于模擬
顆粒物質(zhì)的運動作為單獨的顆粒。DEM
首次應(yīng)用于巖石力學(xué)由庫德爾和施特拉克
16。在這項研究中,所有的模擬是二維的
andperformedusingcommercialdemsoftwarepfc2d [ 17 ]。
一個線性接觸模型用一個彈簧剛度KN
在正常的方向和彈簧剛度ksin剪切
方向(圖1)。摩擦滑動是在切線允許
directionwithafrictioncoefficientl thedampingforceacts。
在相反方向的一個粒子的粒子速度
并對PAR合力成正比—
一個比例常數(shù)顆粒(阻尼系數(shù))
C [ 17 ]。對DEM進行了詳細的描述,讀者
簡稱克利里和sawley [ 18 ],庫德爾和施特拉克
[ 16 ],霍格[ 19 ]和張和白化[ 20 ]。
3。實驗
兩個平行的玻璃板固定200毫米分開
形成土槽。桶形固定小車
這是由滾珠絲杠、步進電機驅(qū)動。的
摩擦μ
KN
KS
圖1。DEM接觸模型。
218
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
完整的裝置可以設(shè)置在一個角的水平
圖2a所示。第一臂進行旋轉(zhuǎn)和固定
這兩個臂保持垂直。第二臂
保持自由的在垂直方向移動。第一,國家—
terweights在位置添加(圖2A)平衡
在桶形和第二組合權(quán)重
臂組件。這導(dǎo)致了一個“'weightless“斗。
然后在位置B加配重的設(shè)置
“有效”桶的重量。由于ARM 2總是垂直
即使鉆機其他零角度,有效的斗
重量總是作用垂直向下(圖2C)。斗
重量為49.1 N,93.2 N,138.3 N和202.1 N使用。
當桶拖在方向標志—
復(fù)雜的,它也可以自由移動在垂直方向
結(jié)果的有效桶的重量和力量
作用在顆粒。桶的底部邊緣
總是設(shè)置為平行于拖動方向和伴侶—
材料的自由表面。這種類型的運動類似于一個
拉鏟挖土機的鏟斗,拖在拖動方向
一組繩,但在所有其他自由度的運動
方向[ 2 ]。
彈簧加載的聚四氟乙烯刮用于密封的小
桶形和玻璃板之間的開口。一個
力傳感器的設(shè)計和建造測量阻力
在斗力。一套應(yīng)變計粘貼到
其中鋼束位置如圖2a所示的。
四集的應(yīng)變計是用于測量力
拖動方向。其他成分不
測量。力傳感器的標定和
校準的定期檢查,避免在測量漂移—
方法。鉆機的角度不是零,力傳感器
為零,在拖動開始。這種補償
forthecomponentofthebucketweightthatactedinthedrag
方向。桶的垂直位移測量—
確定一個線性可變差動變壓器(LVDT)
andusedasinputtothedemsimulation。inboththeexper—
imentsandthedemsimulationsthebucketwasgivenadrag
10毫米的速度?1。在桶形尺寸
在圖2b所示。
本研究采用玉米粒。雖然玉米
谷物不實際的土壤,羅蘭[ 2 ]發(fā)現(xiàn)種子
顆粒是適合的實驗測試和密切
像自然土壤流入拖桶。
4。數(shù)字高程模型參數(shù)和數(shù)值模型
圖3顯示測量的晶粒尺寸范圍
和等效DEM晶粒。正態(tài)分布
在尺寸范圍被用來創(chuàng)建
成群的粒子。團塊可以形成加入
兩個或兩個以上的顆粒(在3D的2D和球盤)
在一起形成一個剛性粒子,即粒子包括
在叢保持固定距離彼此
17。一叢內(nèi)顆??梢灾丿B的任何程度的影響
和接觸力之間是沒有這些粒子產(chǎn)生—
克萊斯。簇不能打破在模擬無論
作用于他們的力量。模型中的20000–30000
用成群粒子。
校準過程,在另一篇文章,是
開發(fā)的無粘性材料。顆粒大小,形狀
從物理測量和密度確定。
實驗室試驗和壓縮試驗
要確定材料的內(nèi)耗angleandstiffness
分別。這些測試都重復(fù)利用數(shù)值
不同的顆粒摩擦系數(shù)的DEM模型—
cientsandparticle thecombinationofshear剛度值。
testandcompressiontestresultscouldbeusedtodeterminea
獨特的顆粒摩擦顆粒剛度值,
表1。
θ
一個
阻力的方向
方向
垂直運動
第二臂
第一臂
B
力傳感器
100毫米
200毫米
150毫米
最大音量
35毫米
45°
WB?COSθ
WBθ
θ
配重
一個
B
C
圖2。實驗裝置。
5 9
8 12
5 6
4 5
3 6
2.5 - 4.5
1.5 - 3
3 5
一個
B
圖3。(一)物理晶粒尺寸和(b)DEM晶粒模型。
尺寸(mm)。
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
219
在軟件PFC2D,所謂的墻,用
建立結(jié)構(gòu)。該試驗臺及桶,同
尺寸與實驗,建立了墻。的
壁是剛性的,按照規(guī)定的翻譯運動—
傳統(tǒng)的旋轉(zhuǎn)速度。力和彎矩
墻壁上不影響墻壁的運動。
在實驗過程中持續(xù)不斷的速度
10毫米的?1應(yīng)用而垂直位移
測定。豎向位移的影響
由兩臺的角度和有效的桶的重量。一個典型的—
iCal結(jié)果如圖4所示。除了最初的過渡—
化,垂直速度幾乎是恒定的,對于一個給定的
安裝程序,并在桶的重量增加。在
DEM模型,牽引速度為10毫米的?1
和測量的垂直位移被讀取
數(shù)據(jù)文件和應(yīng)用于斗。
標準函數(shù)建立pfc2dwere用來
獲取并作用于個人的墻壁的時刻的力量
桶上的作為一個整體。鉆機以外的角度
零,鉆機是保持水平但重力組成—
進行了相應(yīng)的設(shè)置。
5。結(jié)果與討論
很難使定量的比較方面—
ING的流動模式。當比較材料的自由
表面,但是做一些比較。無花果。
5和6顯示材料流入桶
H = 0臺角度?和H = 20?,分別。當COM—
配對材料的自由表面的形狀,仿真—
并能預(yù)測在一般的形狀
灌漿初期。模擬但未能
準確地預(yù)測材料的自由表面在最后
階段的填充。
曲線進行擬合實驗的自由表面和
覆蓋在圖的數(shù)值結(jié)果。5和6。馬克斯—
兩個自由表面之間的不利差異(堆
高度)是沿垂直的方向測量
在拖動方向。兩個測量,一
在數(shù)字高程模型的預(yù)測更高的堆高度,和一個
測量在數(shù)字高程模型的預(yù)測下堆高度。
的價值和在他們的位置的測定
在數(shù)據(jù)顯示。以虛粒子
尺寸為10 mm,數(shù)字高程模型準確地預(yù)測堆高度
在1.5–4.5顆粒粒徑
新!為您提供類似表述,查看示例用法:
分享到
翻譯結(jié)果重試
抱歉,系統(tǒng)響應(yīng)超時,請稍后再試
· 支持中英、中日在線互譯
· 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可
· 提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗更加流暢
7顯示了典型的阻力結(jié)果—
及模擬。在阻力大的跳躍
在開始的實驗中觀察到的最
的運行和無法解釋,需要進一步的
調(diào)查。從這個結(jié)果,很明顯,DEM
模型捕獲的阻力的一般趨勢,但它的前—
預(yù)測值與實測值。在
800毫米的完整的阻力,該模型預(yù)測力
這是15–50 N低于測量力。在
端阻力的誤差為20%。摩擦力
之間的聚四氟乙烯刮和玻璃板電極—
確定在運行無糧。這種摩擦力是子—
提取從測得的阻力。摩擦力
谷物和側(cè)面板之間也有
對測量結(jié)果的影響。這些摩擦力
不可測量的或包含在2D DEM模型
和可能的原因,該模型預(yù)測的低阻力
軍隊[ 6 ]。
阻力的能量被定義為在阻力面積
力–位移曲線。利用不同的鉆機
角H和有效的桶重量WB,拖累能源
e700up到700毫米的位移是在圖8的比較。
第一次觀察,我發(fā)現(xiàn)
增加有效桶的重量,對于一個給定的鉆機角
H,在所需的能量線性增加的阻力。一個
近的調(diào)查顯示,在桶的增加
重量,斗被迫進入更深的材料
這導(dǎo)致了較高的阻力相比,
用較少的量桶。
第二觀察,可以是一個
在鉆機角增大,有阻力的能量減少。
有效的桶的重量WB的行動總是垂直
表1
摘要玉米性能參數(shù)和DEM。
宏觀性能
測量
DEM
內(nèi)摩擦角
23?
24?
休止角
25±2?
24±1?
堆積密度
778公斤米?3
778公斤米?3
密閉的體積彈性模量
1.60 MPa
1.52 MPa
鋼的摩擦材料
14?
14?
校準的DEM的特性
顆粒剛度,KN = KS
450 kN / m \\\
粒子密度,QP
855公斤\\\/m3
顆粒摩擦系數(shù),L
0.12
其他性能
阻尼,C
0.2
模型寬度
0.2米
0
100
200
300
400
500
拖動位移[毫米]
600
700
20
40
60
80
100
垂直位移[毫米]
120
WB = 202.1 N
138.3 N
93.2 N
49.1 N
圖4。與H = 10斗測量垂直位移?和
四值的有效桶的重量法。
220
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
向下(圖2C),正常的力推
桶的材料是由WB?COS(H)。因此,與
在鉆機角的增加,在正常的減少
力推進料桶。這導(dǎo)致了
在阻力減少,從而在減少
把能量,相比,使用一個較低的平臺的結(jié)果
角。DEM模擬能夠捕捉到創(chuàng)—
艾萊依的趨勢,但它預(yù)測阻力的能量低于
測量。這樣做的原因是,預(yù)測阻力
軍隊太低,由于摩擦的排除
谷物與玻璃面板之間的力量。它會,
然而,仍然可以使用的模擬結(jié)果
定量充填優(yōu)化。利用仿真結(jié)果可以確定
有多少力被施加在每個的
桶的部分。圖9桶分為六
部分。該圖表表明,作為總阻力的比例
力,對每一部分的力量。從一開始
為200毫米的位移(25%的總位移—
MENT)總力作用主要在唇和BOT—
湯姆節(jié)。材料開始流入桶,
其他部分發(fā)生作用,第一內(nèi)曲線
最后的前部。小于5%的力
作用在上部。這是遠小于底
第(30%)。這樣做的原因是,里面的物質(zhì)
鏟斗相對斗小運動顯示
圖5。充填結(jié)果與鉆機角H=0?。
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
221
在頂部的壓力是由于
水桶內(nèi)的材料的重量。在底部
段,壓力是由于組合的重量
斗內(nèi)料桶的重量
本身。在整個灌漿過程的30%,20–
拖曳力的唇上。這表明,設(shè)計
嘴唇和牙齒是很重要的。這是眾所周知的
唇的\\\ /牙齒的長度和角度的攻擊是非常重要的
影響充填[ 2 ]因素。羅蘭[ 2 ]利用混合物的小米,豌豆和
他在2D試驗臺的玉米。的填充行為的觀察—
我們的領(lǐng)導(dǎo)理論的發(fā)展,介紹了
流量特性和模式的物質(zhì)進入
斗。羅蘭[ 2 ]命名這一概念的剪切帶
理論。他觀察到一定的剪切平面(斷裂)
不同的物料運動的政權(quán)之間形成。這些
剪切面改變方向和位置依賴
在初始安裝和在填充Pro的不同階段—
過程本身。廣義的原理如圖10所示。的
不同的流動區(qū)域,如通過羅蘭茲[ 2 ]命名,是不可或缺的—
位于圖。該材料的相對運動
對斗是由箭頭表示。
原始材料仍是原狀直到
最后的第三的阻力在這'bulldozing”發(fā)生。
最初的層流流入桶中
第一第三的阻力(圖10a)。加入一定的后
的距離,該層未在坎和隨后
成為固定的尊重的斗
圖6。充填結(jié)果與鉆機角H=20?。
222
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
其余的阻力(圖10B和C)。在陡峭的阻力
角度,材料的流動更加迅速朝后
因為增加的引力援助。這種效應(yīng)
通過對比可以看出無花果。5和6。
在層流層成為固定的,一個新的區(qū)域,
主動流區(qū),發(fā)展(圖10)。在這個區(qū)域,該
材料主要是在垂直位移
方向。積極挖掘區(qū)位于齒
斗唇。這個地區(qū)發(fā)展為材料開始
該INI失敗后進入桶和尺寸增加—
TiAl層。在這個區(qū),原始材料的失敗
要么流入桶為層流層的部分
在第一部分的填充或移動到活動流程
區(qū)在后一部分填充。
恒載,已從“實況”材料造成的
主動流動區(qū)增加,在最初的層流
層。在最初的層流層的一些材料失敗
并開始形成的恒載的部分(圖10)。在
實驗,而材料是流動的,明確的
斷裂或剪切線可以觀察到這里。一個
在拖動角增大,積極挖掘區(qū)和活躍的流
區(qū)往往加入到一個連續(xù)的帶。
100
200
300
400
500
600
700
800
0
實驗
模擬
250
200
阻力[N].
150
100
50
在拖動方向[毫米]位移
圖7。典型的桶拖曳力與鉆機角H=10?和一個桶
重量WB = 138.3。
θ= 0°θ= 10°
θ= 20°
實驗
模擬
40
40
220
200
180
160
140
120
WB [η]
100
80
60
50
60
70
80
100
120
110
90
e700 [ J ]
圖8。斗阻力能e700as斗的重量wbfor功能
不同的鉆機角度H.
0
100
200
300
400
500
600
700
800
0
0.1
0.2
0.3
0.4
0.5
位移[毫米]
阻力比
前
內(nèi)曲線
頂部
唇
底
外曲線
唇
頂部
底
前
內(nèi)曲線
外曲線
圖9。斗阻力分布與H = 10?。
積極挖掘區(qū)
最初的層流層
積極挖掘
區(qū)
最初的層流層
活動流程
區(qū)
處女
材料
積極挖掘
區(qū)
靜載荷
活動流程
區(qū)
最初的層流
層
切變線
切變線
切變線
靜載荷
切變線
原始材料
處女
材料
B
C
一個
10。剪切帶的理論根據(jù)羅蘭茲[ 2 ]。
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
223
應(yīng)當指出的是,圖10顯示的三個階段
充型過程的,但在現(xiàn)實中有一個漸進的轉(zhuǎn)變—
從一個階段到下一個位置。還應(yīng)注意的
這是一個廣義的理論會有變化
結(jié)果時,不同的材料和幾何斗—
嘗試使用。在實驗過程中兩個明確的切變線
可以觀察到。一個擴展的尖端
唇上的自由表面。這是名為切削
線。第二行是一個最初的層流之間
層與恒載,稱為恒載剪切線。
利用DEM和調(diào)查的流動區(qū)域
進一步的,下面的程序設(shè)計。斗
是通過物質(zhì)的'paused”之后的每一個感動
100毫米。每個粒子的位移矢量進行
設(shè)置為零后,斗了進一步
10–15毫米位移(1–3粒長度)。PAR—
顆粒位移比PDR的比率被定義為
粒子的絕對位移向量的大小
斗的絕對位移矢量的大小。
顆粒,然后根據(jù)他們的個人色彩—
UAL PDR值。PDR等于團結(jié)意味著平價—
顆粒與鏟斗運動。結(jié)果顯示在
圖11。這實際上是在一個平均的速度比
短周期。
由剪切帶理論預(yù)測的流動制度
在圖上顯示。三圖片對應(yīng)
圖11。流動區(qū)域采用粒子–桶位移比。
224
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
對三幅圖10給出。在位移
100毫米,積極挖掘區(qū)清晰可見
6例PDR<0.65 0.40。最初的層流層移動到
0.10 6例PDR<0.25桶。這相當于
在圖10A所示的流區(qū)。
500毫米后,積極的“V”形特征
流區(qū)可以看到PDR<0.25 0.10 6。雖然
PDR是相對較低的優(yōu)勢,位移—
nantly在垂直方向。積極挖掘區(qū)仍然是
目前,在桶的后面,最初的層流
層開始變得相對固定的桶。
這是由PDR值增加可見
桶的后面。這相當于在流
圖10B顯示區(qū)。
在800毫米的死載荷的存在切變線
清晰可見。當比較圖10c,活動流程
區(qū)和主動挖掘帶不能區(qū)分
靜載荷。這樣做的原因是,在一個桶取代—
800毫米,推土作用大,超過—
其他流動區(qū)域的陰影。
吊鏟抓斗的優(yōu)化是非常重要
力和能量要求和周期時間。在一些
這將有利于填補水桶中的應(yīng)用
利用能量最小金額。在其他的應(yīng)用—
問題,這將有利于填補水桶一樣快
盡可能減少周期時間[ 1 ]。探討補
率,從實驗圖像被在不同的
填充材料的階段,數(shù)字化的輪廓,和
材料體積內(nèi)斗和計算
表示為最大鏟斗容積百分比。
0.0146 m3is定義在最大斗容
圖2b。利用DEM的結(jié)果,同樣的程序
然后,比較的結(jié)果。
圖12顯示了使用三個不同的實驗結(jié)果—
耳鼻喉科鉆機角度。桶填充百分比作圖
在桶桶位移長度。在
拉索行業(yè),目標是讓桶完全
填充2–3桶的長度。隨著鉆機的增加
角從0?10?,有輕微的增加,填充百分比—
時代的最后階段充填。這是由于
事實上,當材料受到干擾,它更加容易地流動
到桶。當鉆機的角度進一步增加
20?有,然而,在填寫百分比下降。毛皮—
有調(diào)查表明,鉆機角的增加,
桶位移到材料少。它有
已經(jīng)表明,垂直于材料的力
表面是由WB?COS(H)。因此,與增加
在鉆機的角,分力迫使斗
挖,減少。當這個分力減小,
在斗到材料的穿透深度
減少和鏟斗較少的材料。什么時候
斗勺較少的材料,在填充減少
百分比。
實驗和DEM填的比較
百分比是在圖13概述。使用三臺
角H=0?10?30?和兩個有效的斗
權(quán)重WB = 49.1 N和138.3 N,填充率
在100,200,300的位移計算,400,
500,600和700毫米。42個數(shù)據(jù)點的繪制
而兩線表明,在所有情況下,除了
兩個,DEM的結(jié)果均在6%的實驗±—
結(jié)果心理。
在實踐中,鏟斗轉(zhuǎn)動阻止大多數(shù)
該材料脫落時斗脫離。
這一原則在圖14所示,在結(jié)束
它的位移,桶被抬出的材料
保持在鉆機角。鏟斗定位的影響
顯然,桶的材料的數(shù)量
持有。再次,示出實驗的自由表面輪廓
基于DEM的結(jié)果與H = 0的好協(xié)議?對。
H = 20?,DEM模型預(yù)測額外的材料
這個桶可以由不同的解釋后面—
在最后的填充狀態(tài),如圖6的位移
800毫米。
0.5
1
1.5
2
2.5
0
10
20
30
40
50
60
70
80
90
100
位移[桶長度]
桶填充%
θ= 0°
θ= 10°
θ= 20°
圖12。桶填充率為斗位移函數(shù)
不同平臺的角度。
θ= 0°,WB = 49.1 N
θ= 10°,WB = 49.1 N
θ= 20°,WB = 49.1 N
θ= 0°,WB = 138.3 N
θ= 10°,WB = 138.3 N
θ= 20°,WB = 138.3 N
10
20
30
實驗%
40
50
60
0
10
20
30
40
仿真%
50
60
6%
6%
圖13。實驗和DEM的填充百分比的比較。
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
225
6。結(jié)論
本文的主要目的是為了證明
如何準確地離散元方法可以預(yù)測
挖掘機鏟斗填充過程。流動模式
進料桶,阻力斗力
由于材料的相互作用,能量要求和
桶填充率進行比較的實驗觀察—
及測量。這項研究是有限的,共同的—
sionless粒狀材料和二維模型。
本文的結(jié)論是:
1。比較材料的自由表面,DEM精度—
特征模型的材料流到桶中
填充的初始階段。在填充后階段—
ING DEM,然而,無法準確地預(yù)測伴侶—
材料的自由表面。
2。數(shù)字高程模型可以準確地預(yù)測在桶的總趨勢
拖曳力。在800 mm的DEM完整的阻力
預(yù)測阻力15–50 N低于測量
價值觀。測得的最大阻力250 N
而DEM預(yù)測最大牽引力200 N.
3。數(shù)字高程模型無法準確預(yù)測阻力的能量。的
總的趨勢是正確的,它表明,然而
拖動能量呈線性增加的增加
桶的重量。
4?;贒EM的結(jié)果,在20%和30%之間
上嘴唇總斗力的作用。與當前的
這無法驗證實驗裝置。
5。DEM結(jié)果表明良好的協(xié)議與剪切
能帶理論?;诙ㄐ员容^,DEM
可以預(yù)測的初始層的位置,
積極挖掘區(qū),主動流動區(qū)和靜載荷。
6。DEM模型,采用不同的角度和斗鉆機
權(quán)重,能夠預(yù)測的材料的體積內(nèi)
準確地±6%桶。
工具書類
[ 1 ] esterhuyse SWP。幾何上的影響拖桶灌裝
性能。碩士論文機械工程,大學(xué)。
斯泰倫博斯,Stellenbosch,南非1997。
[ 2 ]羅蘭茲JC。拉鏟挖土機的鏟斗填充。博士論文,大學(xué)
昆士蘭昆士蘭澳大利亞1991。
[ 3 ] poschel saluena T,C,魚和縮放屬性的顆粒
材料。Review E 2001:64。
[ 4 ] poschel saluena T,C,魚和縮放屬性的顆粒
材料。維梅爾:PA,迪伯爾斯S,埃勒斯W,赫爾曼HJ,
瀘定,藍姆E,編輯。連續(xù)和不連續(xù)的模擬
粘性摩擦材料。柏林:斯普林格;2001。173頁–84。
[ 5 ]克利里PW。拖桶灌裝。數(shù)學(xué)ENG IND 1998;
7(1):1–24。
[ 6 ] Hawkins J,澤波夫斯基,trampczynski W研究
在挖掘過程中采用挖掘機斗模型效率。
2004 J terramech;40:221–33。
[ 7 ]德超Z,優(yōu)素福Y.動態(tài)模型的刀片切削土壤
齒。J terramech 1992;29(3):317–27。
[ 8 ]伊巴拉SY,mckeys E,布勞頓RS模型的應(yīng)力分布
在粘性土的耕作產(chǎn)生開裂的簡單實現(xiàn)。
2005 J terramech;42:115–39。
[ 9 ] onwualu AP,瓦KC。草案和垂直力得到
飛機動態(tài)切削土壤耕作工具。土壤水庫1998到48:
239–53。
[ 10 ]奧斯曼女士的土壤切削刀片的力學(xué)。農(nóng)業(yè)工程研究
1964;9(4):313–28。
[ 11 ]斯威克WC,perumpral合資。預(yù)測土壤–工具交互模型—
和灰。J terramech 1998;25(1):43–56。
[ 12 ] Hawkins J,澤波夫斯基A.實驗室優(yōu)化的土壤
挖掘過程。2002 J terramech;39:161–79。
[ 13 ]太沙基K.理論土力學(xué)。紐約威利1943。
圖14。在最大持水量斗取向的影響。
226
C.J.庫切,d.n.j. ELS \\\ /雜志46(2009)217–地面227
[ 14 ]卡馬克,Kushwaha R.動態(tài)建模的土壤–工具相互作用—
作用:從流體流的觀點。J terramech
2006;43(4):411–25。
[ 15 ]阿薩夫Z,魯賓斯坦D,什穆列維奇島評價鏈接的軌跡
基于DEM的表演。2006 J terramech;43:141–61。
[ 16 ]庫德爾PA,斯特拉克ODL。顆粒離散數(shù)值方法
組件。巖土工程1979;29:47–65。
【17】艾塔斯卡。pfc2dtheory和背景手冊1999:2版。
< www.itascacg COM >。
[ 18 ]克利里PW,sawley毫升三的工業(yè)三維建模
顆粒流。在CFD對第二國際會議
礦物加工工業(yè);1999。95頁–100。
[ 19 ]霍格C.形狀表示和離散接觸檢測
任意幾何形狀的單元模擬。工程和計算1998;15(3):
374–90。
【20】張D,美白WJ。之間的接觸力的計算
粒子使用彈簧和阻尼模型。粉末技術(shù)1996;88:
59–64。
[ 21 ]歐文DRJ,馮YT,德索薩內(nèi)托EA,科特雷爾M F,王,
安德拉德皮雷斯FM,等。多層壓裂固體模型
顆粒介質(zhì)。在芒哈,Rammerstorfer FG,eberhardste—
比較J,編輯。計算力學(xué)大會第五次會議,七月七日–
。
新!為您提供類似表述,查看示例用法:
分享到
翻譯結(jié)果重試
抱歉,系統(tǒng)響應(yīng)超時,請稍后再試
· 支持中英、中日在線互譯
· 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可
· 提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗更加流暢
?2013 Baidu ??使用百度前必