紅薯切片機設計【離心式切片機】
購買設計請充值后下載,資源目錄下的文件所見即所得,都可以點開預覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
南華大學機械工程學院畢業(yè)設計(論文)Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .Jiangsu Province .P.R.China212013Tel.: +86-511-8;Fax:+86-511-8yangdy163.comJinhu Agricultural Mechanization Technology Extension Station . Jinhu countyJiangsu Province .P.R.China 211600Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements. Keywords: lotus root; cutting mechanism; smoothness; optimization 1 Introduction China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.2 Structure of Cutting Mechanism of Slicing Machine Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.Fig.1 Virtual prototyping of cutting mechanismFig.2 Diagram of cutting mechanism Study and improvement for slice smoothness in slicing machine of lotus root.3 The Cause of the Bevel Edge Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.When crank speed was 6990r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting. Fig.3 Horizontal force of CFig.4 Vertical force of C4 Simulation and Optimization If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.When crank speed was 6090r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.Fig.5 Velocity curve of center of mass of knife Fig.6 Acceleration curve of center of mass of knife Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.Fig.7 vertical force curves in different offest Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s0.3s achieved the minimum and the quality of cutting was the best.When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.Fig.8 Vertical force of C5 Experimental AnalysisThe relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.Table 1 Relative error of thickness of slicingNOCrank speed (r/min)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%Average6.1%6.8%8.2%9.4% It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.6 ConclusionThe vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1References 1 Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)2 Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university 2008)in Chinese)3 Ce ,Z .:mechanical dynamics .higher education press1999)4Xiuning ,C.:optimal design of machinery .zhejiang university press1999)5Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)Page 8 of 8南華大學機械工程學院畢業(yè)設計(論文)蓮藕切片機切片平滑度的研究和改進楊德勇 胡建平 韋恩鑄 雷恒群 孔祥次農業(yè)設備和現代技術的國家重點實驗室江蘇省教育部 江蘇大學.江蘇.鎮(zhèn)江中國 江蘇省 212013電話 +86-511-8:傳真+86-511-8yangdy163.com金湖農業(yè)機械化技術推廣站中國 江蘇省 211600摘要:針對蓮藕切削質量不高和蓮藕片的斜邊問題,通過分析原因,改進的方法就是減少刀在垂直方向的力。在Pro/E的環(huán)境下創(chuàng)建了蓮藕切片機的3D零件和裝配體。基于虛擬樣機技術,切片機的運動學和動力學分析是在ADAMS軟件模擬實驗下實現的,獲得最佳的切削時間為0.2s0.3s,并且得到了刀在垂直方向上的力的曲線。刀在垂直方向上的力隨著曲柄偏移量的變化而改變。曲柄的偏移量優(yōu)化結果表明,當曲柄的偏移量為-80mm時,在切削時間里的垂直方向上的力幾乎為零。測試結果表明,經過改進設計后,切片厚度的相對誤差小于10,這是能夠完全滿足技術要求的。關鍵詞:蓮藕;切削機制;平滑度;優(yōu)化1前言 中國是一個生產蓮藕的大國,蓮藕半成品系列食品的國內消費和外部的出口需求量比較大,為了提高工作效率,減輕勞動強度,設計工作組,在借鑒人工切蓮藕片原理的基礎上設計和開發(fā)一個新型的切片機(畢偉,胡建平,2006年)。這種新型的切片機容易解決切片易斷,粘刀,難清理等問題,但過程中還是出現不平滑切削和一些斜邊的現象。本文通過對切削時刀片的分析,發(fā)現了一些造成斜邊現象的原因,并提出了相應的改進方法,并通過實驗得到了驗證。2 切片機切削結構原理蓮藕切片的切削原理是機器的核心,性能直接影響切片的質量。在使用PRO / E平臺下建立了蓮藕切削原理的虛擬樣機(圖1),結構本身的原理圖如圖2所示。蓮藕切片機的切削原理是通過核心的曲柄滑塊機構往里面添加材料,它可以堆疊許多蓮藕,蓮藕依靠自己本身上部和下部的蓮藕,以便它能夠到達擋板的表面。曲柄滑塊機構是由電機驅動,在滑塊上安裝刀片切蓮藕。但在切削過程中,發(fā)現在一塊蓮藕兩端面的平行度是不足夠的,這不能滿足加工的技術要求。圖1 蓮藕切削原理的虛擬樣機圖2 切片原理結構圖切片機的蓮藕片平滑度的研究和提高。3 斜邊的原因厚薄不均勻和斜邊問題與刀片在切削過程中的力量有關。按照結構原理(圖2),不考慮相互間摩擦和重量的因素,C點的力F的方向是沿鏈接方向。力F可以分解為一個水平方向的分力和一個垂直方向的分力。水平分力造成的刀沿垂直方向移動切削,但垂直方向上的力造成的刀沿垂直方向移動。由于滑塊和導軌之間的差距,垂直分力會使葉片在運動時變形,刀不能沿水平方向切蓮藕,導致出現斜邊。因此,解決斜邊的問題和提高切削質量的關鍵是減少或消除切片時的垂直分力。 當曲軸轉速為6090轉/分鐘,C點和刀片連接部位的水平和垂直方向的力曲線如圖3和圖4所示。從圖上可以看出,當曲柄的速度提高后,C點水平和垂直方向的力也增加了,相對穩(wěn)定的水平力有利于切削蓮藕期間,但垂直方向上的力也逐漸增加。越多的垂直方向上的力,越不利于切削的質量。圖3 C點的水平力圖4 C點的垂直方向上的力4 仿真和優(yōu)化如果提高切片的平整度,結構優(yōu)化可以減少垂直分力,所以盡可能的要刀片保持水平。當曲柄速度6090轉/分鐘時,刀質量中心的速度曲線和加速度曲線分別如圖5和圖6所示。根據速度曲線,在0.2s0.3s時間里,刀質量中心的速度是比較大的。按照刀應該有更高的速度來切削蓮藕的要求,這期間的時間切削比其他時間更有利。根據加速度曲線,一個周期計算,在0.15s0.3s的時間里,相比其他的時間段加速度值是相對比較小。這表明速度的變化相對較小,同時慣性產生的力小,切片機受力引起的振動影響小。因此,在0.2s0.3s里來切蓮藕有利于提高蓮藕片的切削質量。圖5 刀片的質量中心速度曲線圖6 刀片的質量中心加速度曲線 基于上述分析,刀片和鏈接之間的垂直分力是造成斜邊的主要原因。根據曲柄滑塊機構的特點,在切削時間段通過改變曲柄偏移來減少對刀垂直方向上的力,從而提高切削質量。當曲軸轉速為60轉/分鐘,曲軸偏心率得到了優(yōu)化。當曲柄偏移量分別為40mm,20mm,0mm,-20mm, -40mm, -80mm, -120mm時,在不同的偏移量下模擬其原理,獲得了垂直方向上的力曲線,如圖7所示。圖7 不同偏移下的垂直方向上的力曲線圖7表明:偏心率為正值時,在0.2s0.3s隨著曲柄偏移量增加,C點的垂直方向上的力逐漸增加;當偏心率為負值時,隨著曲柄偏移量的增加,力開始下降,然后在-80mm處開始逐步增加。所以,當偏移量為-80mm,力在0.2s0.3s的數值降到最低,這時切削質量是最佳的。 當曲柄在其他的速度旋轉,有相同的優(yōu)化結果。圖8顯示的是曲軸轉速為80轉/分鐘、曲軸偏移量為0mm到-80mm時,垂直方向上的力。從圖8可以看出,當偏移量為-80mm時,C點垂直方向的里在0.2s0.3s大大減少。因此通過優(yōu)化曲柄偏移量可以減少垂直方向上的力。圖8 C點的垂直方向上的力5 實驗分析蓮藕片的厚度相對誤差反映了切削質量,一般控制在10。在結構的優(yōu)化和改進前,總是存在斜邊現象,厚度相對誤差約為15%左右,這是難以滿足的技術要求。對曲柄滑塊機構的偏移量進行優(yōu)化,并根據優(yōu)化的結果,它的結構有了一些改進。改進后的曲柄,在速度的條件為80110轉/分鐘時,切削試驗出來的厚度相對誤差的統(tǒng)計數據如表1所示。從四個速度層次進行分析實驗,每個速度層次進行三次實驗。表 1 切片厚度相對誤差 序號曲柄速度(轉/分鐘)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%平均6.1%6.8%8.2%9.4%來自表1的數據顯示,當曲柄速度為80110轉/分鐘時,切片厚度相對誤差能滿足各項技術指標,尤其是當曲軸旋轉速度為80轉/分鐘和90轉/分鐘時,厚度相對誤差低于7,達到了較高的切削質量。6 總結 切削的過程中,表面不平整和斜邊的主要原因是作用在刀組件上的垂直分力,因此提高質量的關鍵是減小垂直方向上的力。通過刀片質量中心速度和加速度模擬分析曲線得到,0.2s0.3s是切片的最佳時間。通過優(yōu)化曲柄的偏移量,當偏移量為-80mm時,垂直方向上的力在切削時間大大減小。經過實驗改進蓮藕切片機后,實驗結果表明,通過改變曲柄偏移量,厚度相對誤差不到10,完全能夠滿足要求。因此,平整度不理想和斜邊問題基本解決。參考文獻1 胡建平.蓮藕切片技術的學習和新的模型設計. 中國農業(yè)機械化研究(12),112114.20062 韋恩鑄.基于虛擬樣機技術的新型蓮藕切片機仿真優(yōu)化.江蘇大學,20083 張 策.機械動力學.高等教育出版社,19994 陳秀林.機械優(yōu)化設計.浙江大學出版社,1999.5 陳麗萍,鄭云群,容微群.機械系統(tǒng)的動態(tài)分析和應用指南ADAMS.北京:清華大學出版 社,2005第 7 頁 共 7 頁湖南農業(yè)大學東方科技學院畢業(yè)論文(設計)中期檢查表學 部: 理工學部 學生姓名楊軻涵學 號200841914118年級專業(yè)及班級2008級機械制造及其自動化一班指導教師姓名張嵐指導教師職稱副教授畢業(yè)論文題目紅薯切片機設計畢業(yè)論文工作進度已完成的主要內容尚需解決的主要問題 完成了所需資料文獻的查找,確定了總體結構的設計方案,完成了總體設計的系統(tǒng)設計。1. 總體設計的計算和各零部件的設計計算。2. CAD圖紙的繪制,修改及打印。3. 對設計進行校核和修改計算。4. 指導老師的審查與修改。5. 設計說明書的撰寫和定稿。指導教師意見指導教師簽名: 年 月 日檢查(考核)小組意見檢查小組組長簽名: 年 月 日湖南農業(yè)大學東方科技學院畢業(yè)論文(設計)任務書學生姓名楊軻涵學 號200841914118年級專業(yè)及班級2008級機械設計制造及其自動化(1)班指導教師及職稱張嵐副教授學 部理工學部2011 年9 月20 日填 寫 說 明一、畢業(yè)論文(設計)任務書是學院根據已經確定的畢業(yè)論文(設計)題目下達給學生的一種教學文件,是學生在指導教師指導下獨立從事畢業(yè)論文(設計)工作的依據。此表由指導教師填寫。二、此任務書必須針對每一位學生,不能多人共用。三、選題要恰當,任務要明確,難度要適中,份量要合理,使每個學生在規(guī)定的時限內,經過自己的努力,可以完成任務書規(guī)定的設計研究內容。四、任務書一經下達,不得隨意更改。五、各欄填寫基本要求。(一)主要內容和要求:1工程設計類選題明確設計具體任務,設計原始條件及主要技術指標;設計方案的形成(比較與論證);該生的側重點;應完成的工作量,如圖紙、譯文及計算機應用等要求。2實驗研究類選題明確選題的來源,具體任務與目標,國內外相關的研究現狀及其評述;該生的研究重點,研究的實驗內容、實驗原理及實驗方案;計算機應用及工作量要求,如論文、文獻綜述報告、譯文等。3文法經管類論文明確選題的任務、方向、研究范圍和目標;對相關的研究歷史和研究現狀簡要介紹,明確該生的研究重點;要求完成的工作量,如論文、文獻綜述報告、譯文等。(二)主要參考文獻與外文資料:在確定了畢業(yè)論文(設計)題目和明確了要求后,指導教師應給學生提供一些相關資料和相關信息,或劃定參考資料的范圍,指導學生收集反映當前研究進展的近13年參考資料和文獻。外文資料是指導老師根據選題情況明確學生需要閱讀或翻譯成中文的外文文獻。(三)畢業(yè)論文(設計)的進度安排:1設計類、實驗研究類課題實習、調研、收集資料、方案制定約占總時間的20%;主體工作,包括設計、計算、繪制圖紙、實驗及結果分析等約占總時間的50%;撰寫初稿、修改、定稿約占總時間的30%。2文法經管類論文實習、調研、資料收集、歸檔整理、形成提綱約占總時間的60%;撰寫論文初稿,修改、定稿約占總時間的40%。六、各欄填寫完整、字跡清楚。應用黑色簽字筆填寫,也可使用打印稿,但簽名欄必須相應責任人親筆簽名。畢業(yè)論文(設計)題目紅薯切片機設計主要內容和要求(宋體五號,行間距單倍行距)主要內容:1.進行原理的分析及方案的比較2.進行總體結構設計3.進行傳動部分設計4.進行執(zhí)行部分設計5.進行必要的設計計算(含動力參數、運動學分析、剛度計算、強度計算等)要求:1.完成至少3張圖紙2.完成約.萬字的設計說明書3.查閱參考文獻篇以上4.圖紙及說明書符合規(guī)范要求并提交電子檔注:此表如不夠填寫,可另加附頁。主要參考資料(具體格式以規(guī)范化要求規(guī)定為準)1 瀝先樣生姜擊皮法 J中國釀造 1993(3):35-57452彭三河蓮藕柔性去皮機的研究J包裝與食品機槭,2004(6):1OII3 孫桓陳作模機械匣理M北京:高等教育出版社20014沈再春農產品加工機械與設備M北京:農業(yè)出版社19935程凌敏食品加工機械M北京:中國食品出版社,19986 沈再春牡產品加工機械與設備北京:農業(yè)出版社,1993887 孛昌滿離心式人參鉀片機設計研究收機與食品機械 1996(6):2228 j Alvarado CJ,Reichelderfer MAI IC guideline for infection prevention and control in flexible endoscopyJAmerican Journal of Infection Contro12000,28:1389宋烽,董薪,許多朵手術器械清洗方法的研究EJ中華醫(yī)院感染學雜志2006,16(4):1lO一41110李云飛,張青,錢麗麗,等蔬菜清洗中氣流強化作用研究J農業(yè)工程學報,2001,(1)11高翔,陸兆新,張立奎,等超聲波氣泡清洗鮮切西洋芹的應用研究J食品工業(yè)科技,2003,(11)12吳玉發(fā),梁健水氣浴葉菜清洗機的應用研制J現代農業(yè)裝備,2004,(4)13趙長濱,劉曉娟,林君堂,等爆氣擾水式蔬菜清洗機研究設計J農機化研究,2008,(8)14楊紅兵,丁為民,陳坤杰,等新型蔬菜清洗機的研制J農業(yè)工程學報,2005,(1)15楊紅兵新型蔬菜清洗機的研制與試驗研究D南京:南京農業(yè)大學。200416王莉蔬菜清洗機不同清洗模式的節(jié)水比較J農業(yè)工程學報,2008,(9)17吳玉發(fā),梁健水氣浴葉菜清洗機的應用研制J現代農業(yè)裝備。2004,(4) 工作進度安排(宋體五號,行間距固定值22磅)起止日期主要工作內容2011年9月25日前選題、下達任務書、查閱文獻、開題2012年2月1日前總體方案設計2012年3月15日前結構設計、零部件設計、準備中期檢查2012年4月1日前繪圖、編寫設計說明書2012年5月15日前修改、完善畢業(yè)設計、提交正稿、準備答辯要求完成日期:20 年 月 日 指導教師簽名: 接受任務日期:20 年 月 日; 學生本人簽名: 注:簽名欄必須由相應責任人親筆簽名。
收藏