X62W萬能升降臺銑床的PLC改造
壓縮包已打包上傳。下載文件后為完整一套設計。【清晰,無水印,可編輯】dwg后綴為cad圖紙,doc后綴為word格式,所見即所得。有疑問可以咨詢QQ 197216396 或 11970985
河南科技學院2005屆本科畢業(yè)論文X62W萬能升降臺銑床的PLC改造論文作者姓名: 牛 瑞 利所 在 院 系: 機電學院機電系 所 學 專 業(yè): 機械設計制造及其自動化 導師姓名職稱: 楊青杰 工程師 論文完成時間: 2005年5月27日 河南科技學院本科畢業(yè)生論文(設計)成績表姓名牛瑞利院系機電學院專業(yè)機械制造及其自動化論文題目X62W萬能升降臺銑床的PLC改造指定指定任選指導教師評語及評分占30指導教師評語:指導教師評分_ 指導教師簽字:_ 年 月 日論文成績(占40)答辯小組評語及評分占30答辯小組評語:答辯小組評分_ 答辯小組組長簽字_ 年 月 日總分_等級_主管院長(系主任)_簽字_(蓋公章) 年 月 日河南科技學院本科畢業(yè)論文(設計)管理工作評估表學院(系) 年級序號評 估 內 容分值得分1論文組織工作管理落實到位102 導師配備符合要求103 導師指導認真254 論文答辯工作落實到位255 論文評分客觀公證206 論文撰寫格式及裝訂符合要求57 論文存檔符合規(guī)定5 合 計 分100 評 估 等 級意見與建議評估人_ 年 月 日注:I 評估內容說明:1.論文組織管理工作落實到位:院、系成立畢業(yè)論文(設計)工作領導組,具體負責本院、系的畢業(yè)論文(設計)工作,成員由主管教學(科研)的系主任及有關教研室主任和教學秘書組成;各院、系同時成立畢業(yè)論文(設計)工作指導組,指導組由有關教研室主任任組長并由2-4名指導教師參加。2.導師配備符合要求:指導教師應具有指導畢業(yè)論文(設計)能力,并獲得中級以上技術職稱或具有碩士、博士學位。3.導師指導認真:能認真指導學生選題,擬訂畢業(yè)論文(設計)計劃,及指導學生完成畢業(yè)論文撰寫的全過程。4.論文答辯工作落實到位:成立院、系畢業(yè)論文答辯委員會,并根據(jù)專業(yè)成立相應的論文答辯小組,負責組織學生按答辯程序進行答辯。5.論文評分客觀公正:論文成績由三種分數(shù)組成;即指導教師評分(占30),論文評分(占40),答辯小組評分(占30)。優(yōu)秀率一般不超過20。6.論文撰寫格式及裝訂符合要求:撰寫格式:題目;摘要;關鍵詞;正文;參考文獻;裝訂格式:封面(畢業(yè)論文/設計題目:論文作者姓名;作者所在院、系,作者所學專業(yè);導師姓名職稱;論文完成時間)目錄;摘要;正文;參考文獻;封底。7.論文按時存檔:學生離校一周前交作者所在院、系存檔。II.評估等級說明:評估等級按優(yōu)、良、中、差劃分,優(yōu)90_100分;良76_89分;中60_75分;差60分以下。畢業(yè)設計(論文)任務書附表一題目名稱 X62W萬能升降臺銑床的PLC改造學生姓名牛瑞利所學專業(yè)機械制造及其自動化班級ZSB031指導教師姓名楊青杰所學專業(yè)電氣工程職稱工程師一、 設計(論文)主要內容1.X62W銑床控制部分的繼電器-接觸器控制分析;2.X62W銑床控制部分的PLC控制設計,包括PLC硬件設計和軟件設計;3.X62W銑床的遠程控制設計。二、 畢業(yè)設計的主要技術指標(文科不填)1.X62W銑床控制電路分析;2.PLC的I/O分配;3.PLC的選型;4.PLC的控制程序設計;5.PLC輸入、輸出接線圖;6.遠程控制設計三、 畢業(yè)設計(論文)的基本要求1、 畢業(yè)設計(論文)一份2、 不少與3000漢字的與本專業(yè)有關的翻譯資料一份3、實驗要求:實驗中所用到的數(shù)據(jù)嚴格按照國家規(guī)定或要求繪制。4、圖表要求:所有曲線、圖形表、線路圖、流程圖、程序框圖、示意圖等不準徒手畫,必須按國家規(guī)定標準或工程要求繪制。 5、文字通順,語言流暢,書寫工整,無錯別字,不得請他人代寫。 四、 畢業(yè)設計(論文)進度安排2005年4月14日:發(fā)放任務書2005年4月14日2005年4月24日:查閱資料、調研、提交開題報告2005年4月25日2005年5月15日:課題研究(PLC控制設計、遠程控制設計)2005年5月16日2005年5月26日:根據(jù)改造成果撰寫畢業(yè)論文及外文翻譯2005年5月27日: 提交畢業(yè)論文2005年6月6日2005年6月10日: 畢業(yè)答辯畢業(yè)設計(論文)開題報告附表二題目名稱 X62W萬能升降臺銑床的PLC改造學生姓名牛瑞利專業(yè)機械制造及其自動化班級 ZSB031一、選題的目的意義我希望通過這次畢業(yè)設計能達如下目的:1. 能掌握繼電器控制與PLC控制之間的聯(lián)系與不同之處及優(yōu)缺點對比,并能完成這兩種控制間的轉換;2. 掌握構建PLC控制系統(tǒng)的方法和步驟;3. 熟練掌握PLC接線、編程和調試程序的能力;4. 一定的維護、優(yōu)化PLC程序的能力;5. 學會用MCGS組態(tài)軟件設計遠程控制。 二、國內外研究綜述PLC作為工控機的一員,在主要工業(yè)國家中成為自動化系統(tǒng)的基本電控裝置。它具有控制方便、可靠性高、容易掌握、體積小、價格適宜等特點。據(jù)統(tǒng)計,當今世界PLC生產廠家約150家,生產300多個品種。預計到2000年,銷售額約為86億美元,占工控機市場份額的50%,PLC將在工控機市場中占有主要地位,并保持繼續(xù)上升的勢頭。PLC在60年代末引入我國時,只用作離散量的控制,其功能只是將操作接到離散量輸出的接觸器等,最早只能完成以繼電器梯形邏輯的操作。新一代的PLC具有PID調節(jié)功能,它的應用已從開關量控制擴大到模擬量控制領域,廣泛地應用于航天、冶金、輕工、建材等行業(yè)。但PLC也面臨著其它行業(yè)工控產品的挑戰(zhàn),各廠家正采取措施不斷改進產品,主要表現(xiàn)為以下幾個方面: 1.微型、小型PLC功能明顯增強;2.集成化發(fā)展趨勢增強;3.向開放性轉變。三、畢業(yè)設計(論文)所用的方法讀懂X62W萬能銑床的繼電器控制電路。當控制邏輯不變更時,則從分析原繼電接觸式控制系統(tǒng)的控制邏輯著手,根據(jù)繼電接觸式的控制邏輯與PLC的控制邏輯等效的原則進行改造,其步驟如下:1.根據(jù)控制要求確定輸入與輸出點數(shù),進行I/O分配,編制“I/O分配表” ;2.選出機型;畫出輸入、輸出接線圖;3.根據(jù)邏輯等效的原則畫出對應的PLC梯形圖,進行修改完善;4.將程序輸入FPWIN-GR編程軟件中,與所選機型的PLC聯(lián)機空載調試;5.經(jīng)調試正確的程序保存,作為技術文件存檔;6.運用MCGS組態(tài)軟件做出X62W銑床控制的監(jiān)控組態(tài)畫面。 五、 主要參考文獻與資料獲得情況1.張萬忠主編 可編程序控制器入門與應用實例 北京:中國電力出版社,2005,12.陳瑞陽主編 機電一體化控制技術 北京:高等教育出版社,2004,83.郁漢琪,郭健主編 可編程序控制器原理及應用 北京:中國電力出版社,2004,74.張桂香主編 電氣控制與PLC應用 北京:中國電力出版社,2003,75.路林吉,王堅主編 可編程控制器原理及應用 北京:清華大學出版社2002,96.張筱琪主編 機電設備控制基礎 北京:中國人民大學出版 2000,117.許曉峰主編 電機及拖動 北京:高等教育出版社 2000,88.MITSUBSHI ELECRIC CORPORATLON D松下電工可編程控制器手冊六、 指導教師審批意見 指導教師簽名: 年 月 日畢業(yè)設計(論文)中期檢查表附表三題目名稱 X62W萬能升降臺銑床的PLC改造設計人姓名牛瑞利所學專業(yè)機械設計制造及自動化班級 ZSB031一、 階段性成果 在2005年4月24日時,資料已準備充分,有了研究課題的方向和思路;在2005年5月5日時,PLC控制設計(包括PLC硬件設計和軟件設計)已完成;在2005年5月15日時,用MCGS組態(tài)軟件構建X62W銑床的遠程控制的組態(tài)界面已完成;二、存在問題1 X62W銑床水平工作臺變速時的瞬時點動控制的PLC改造中其聯(lián)鎖情況的分析不明了;2 MCGS組態(tài)軟件構建控制界面時其制動按鈕動作不起作用。 三、擬采取的研究方法和可行性分析1 細化分水平工作臺變速時的瞬時點動控制的每一條聯(lián)鎖鏈。2 在組態(tài)界面上重新設置制動按鈕與工作臺和主軸的動畫連接屬性。四、指導教師對學生勞動紀律、設計(論文)進展等方面的評語指導教師簽名: 年 月 日河南科技學院機電學院Production AutomationIntroduction to production AutomationAutomation is a widely used term in manufacturing. In this context ,automation can be defined as technology concerned with the application of mechanical, electronic, and computer-based systems to operate and control production. Examples of this technology include:Automatic machine tools to process parts.Automated transfer lines and similar sequential production systemsAutomatic assembly machinesIndustrial robotsAutomatic material handing and storage systemsAutomated inspection systems for quality control.Feedback control and computer process control.Computer systems that automate procedures for planning, data collection, and decision making to support manufacturing activities.Automated production systems can be classified into two basic categories: fixed automation and programmable automation.Fixed AutomationFixed automation is what Harder was referring to when he coined the word automation. Fixed automation refers to production systems in which the sequence of processing or assembly operations is fixed by the equipment configuration and cannot be readily changed without altering the equipment. Although each operation in the sequence is usually simple, the integration and complex. Typical features of fixed automation include 1.high initial investment for custom-engineered equipment, 2.high production rates,3.application to products in which high quantities are to be produced ,and 4.relative inflexibility in accommodating product changes. Fixed automation is economically justifiable for products with high demand rates. The high initial investment in the equipment can be divided over a large number of units, perhaps millions, thus making the unit cost low compared with alternative methods of production. Examples of fixed automation include transfer lines for machining, dial indexing machines, and automated assembly machines. Much of the technology in fixed automation was developed in the automobile industry; the transfer line (dating to about 1920 ) is an example.Programmable Automation For programmable automation, the equipment is designed in such a way that the sequence of production operations is controlled by a program, i.e., a set of coded instructions that can be read and interpreted by the system. Thus the operation sequence can be readily changed to permit different product configurations to be produced on the same equipment. Some of the features that characterize programmable automation include 1. high investment in general-purpose programmable equipment, 2. lower production rates than fixed automation, 3. flexibility to deal with changes in product configuration, and 4. suited to low and / or medium production of similar products or parts (e.g. part families). Examples of programmable automation include numerically controlled machine tools, industrial robots, and programmable logic controllers. Programmable production systems are often used to produce parts or products in batches. They are especially appropriate when repeat orders for batches of the same product are expected. To produce each batch of a new product, the system must be programmed with the set of machine instructions that correspond to that product. The physical setup of the equipment must also be changed; special fixtures must be attached to the machine, and the appropriate tools must be loaded. This changeover procedure can be time-consuming. As a result, the usual production cycle for a given batch includes 1. a period during which the setup and reprogramming is accomplished and 2. a period in which the batch is processed. The setup-reprogramming period constitutes nonproductive time of the automated system.The economics of programmable automation require that as the setup-reprogramming time increase, the production batch size must be made larger so as to spread the cost of lost production time over a larger number of units. Conversely , if setup and reprogramming time can be reduced to zero, the batch size can be reduced to one. This is the theoretical basis for flexible automation, an extension of programmable automation. A flexible automated system is one that is capable of producing a variety of products ( or parts) with minimal lost time for changeovers from one product to the next. The time to reprogram the system and alter the physical setup is minimal and results in virtually no lost production time . Consequently, the system is capable of producing various combinations and schedules of products in a continuous flow, rather than batch production with interruptions between batches. The features of flexible automation are 1. high investment for a custom-engineered system, 2. continuous production of mixtures of products , 3. ability to change product mix to accommodate changes in demand rates for the different products made, 4. medium production rates, and 5. flexibility to deal with product design variations. Flexible automated production systems operate in practice by one or more of the following approaches: 1. using part family concepts, by which the parts made on the system are limited in variety; 2. reprogramming the system in advance and / or off-line, so that reprogramming does not interrupt production; 3. downloading existing programs to the system to produce previously made parts for which program are already prepared; 4. using quick-change fixtures so that physical setup time is minimized; 5. using a family of fixtures that have been designed for a limited number of part styles; and 6. equipping the system with a large number of quick-change tools that include the variety of processing operations needed to produce the part family. For these approaches to be successful , the variation in the part styles produced on a flexible automated production system is usually more limited that a batch-type programmable automation system. Examples of flexible automation are the flexible manufacturing systems for performing machining operations that date back to late 1960s.Numerical Control Numerical control ( often abbreviated NC) can be defined as a form of programmable automation in which the process is controlled by numbers, letters , and symbols. In NC, the numbers form a program of instructions designed for a particular workpart or job. When the job changes, the program of instructions is changed. This capability to change the program for each new job is what gives NC its flexibility . It is much easier to write new programs than to make major changes in the production equipment. NC equipment is used in all areas of metal parts fabrication and comprises roughly 15% of the modern machine tools in industry today. Since numerically controlled machines are considerably more expensive than their conventional counterparts , the asset value of industrial NC machine tools is proportionally much larger than their numbers. Equipment utilizing numerical control has been designed to perform such diverse operations as drilling, milling, turning, grinding, sheetmetal pressworking spot welding, are welding , riveting, assembly , drafting ,inspection, and parts handling. And this is by no means a complete list. Numerical control should be considered as a possible mode of controlling the operation for any production situation possessing the following characteristics:1.Similar workparts in terms of raw material (e.g. , metal stock for machining).2.The workparts are produced in various sizes and geometries. 3.The workparts are produced in batches of small to medium-sized quantities.4.A sequence of similar processing steps is required to complete the operation on each workpiece. Many machining jobs meet these conditions. The machined workparts are metal, they are specified in many different sizes and shapes, and most machined parts produced in industry today are made in small to medium-size lot sizes. To produce each part, a sequence of drilling operations may be required, or a series of turning or milling operations. The suitability of NC for these kinds of jobs is the reason for the tremendous growth of numerical control in the metalworking industry over the last 25 years. Basic Components of an NC System An operational numerical control system consists of the following three basic components :1. Program of instructions.2. Controller unit, also called machine control unit(MCU).3. Machine tool or other controlled process.Transfer MachinesThe highest degree of automation obtainable with special-purpose , multifunction machines is achieved by using transfer machines. Transfer machines are essentially a combination of individual workstations arranged in the required sequence, connected by work transfer devices, and integrated with interlocked controls. Workpieces are automatically transferred between the stations, which are equipped with horizontal, vertical, or angular units to perform machining, gagging, workpiece repositioning, assembling, washing, or other operations . The two major classes of transfer machines are rotary and in-line types. An important advantage of transfer machines is that they permit the maximum number of operations to be performed simultaneously. There is relatively no limitation on the number of workpiece surfaces of planes that can be machined, since devices can be interposed in transfer machines at practically any point for inverting, rotating, or orienting the workpiece, so as to complete the machining operations. Work repositioning also minimizes the need for angular machining heads and allows operations to be performed in optimum time. Complete processing from rough castings or forgings to finished parts is often possible. One or more finished parts are produced on a transfer machine with each index of the transfer system that moves the parts from station to station. Production efficiencies of such machines generally range from 50% for a machine producing a variety of different parts to 85% for a machine producing one part, in high production, depending upon the workpiece and how the machine is operated ( materials handling method , maintenance procedures, etc.) All types of machining operations, such as drilling , tapping, reaming, boring, and milling, are economically combined on transfer machines . Lathe-type operations such as turning and facing are also being performed on in-line transfer machine, with the workpieces being rotated in selected machining stations. Turning operations are performed in lathe-type bridge units. Workpieces are located on centers and rotated by chucks at each turning station. Turning stations with CNC are available for use on in-line transfer machines. The CNC units allow the machine cycles to be easily altered to accommodate changes in workpiece design and can also be used for automatic tool adjustments. Maximum production economy on transfer lines is often achieved by assembling parts to the workpieces during their movement through the machine . Such item as bushings, seals , welch plugs, and heat tubes can be assembled and then machined or tested during the transfer machining sequence. Automatic nut torquing following the application of apart subassemblies can also be carried out. Gundrilling or reaming on transfer machines is an ideal application provided that proper machining units are employed and good bushing practices are followed . contour boring and turning of spherical seats and other surfaces can be done with tracer-controlled single-point inserts, thus eliminating the need for costly special form tools. In-process gagging of reamed or bored holes and automatic tool setting are done on transfer machines to maintain close tolerances. Less conventional operations sometimes performed on transfer machines include grinding , induction heating of ring gears for shrink-fit pressing on flywheels, induction hardening of valve seats, deep rolling to apply compressive preloads, and burnishing. Transfer machines have long been used in the automotive industry for producing identical components at high production rates with a minimum of manual part handling . In addition to decreasing labor requirements , such machines ensure consistently uniform, high-quality parts at lower cost. They are no longer confined just to rough machining and now often eliminate the need for subsequent operations such as grinding and honing. More recently, there has been an increasing demand for transfer machines to handle lower volumes of similar or even different parts in smaller sizes, with means for quick changeover between production runs. Built-in flexibility, the ability to rearrange and interchange machining units , and the provision of idle stations increases the cost of any transfer machine, but such features are economically feasible when product redesigns are common. Many such machines are now being used in nonautomotive applications for lower production requirements.Special features now available to reduce the time required for part changeover include standardized dimensions, modular construction, interchangeable fixtures mounted on master pallets that remain on the machine, interchangeable fixture components , the ability to lock out certain stations for different parts by means of selector switches, and programmable controllers. Product design is also important, and common transfer and clamping surfaces should be provided on different parts whenever possible. Programmable Logic Controllers A programmable logic controller (PLC) is a solid-state device used to control machine motion or process operation by means of a stored program. The PLC sends output control signals and receives input signals through input / output (I/O) devices. A PLC controls outputs in response to stimuli at the inputs according to the logic prescribed by the stored program. The inputs are made up of limit switches , pushbuttons, thumbwheels, switches, pulses, analog signals , ASCII serial data, and binary or BCD data from absolute position encoders . The outputs are voltage or current levels to drive end devices such as solenoids, motor starters , relays, lights, and so on . Other output devices include analog devices, digital BCD displays , ASCII compatible devices, servo variable-speed drives , and even computers. Programmable controllers were developed (circa in 1968) when General Motors Corp, and other automobile manufactures were experimenting to see if there might be an alternative to scrapping all their hardwired control panels of machine tools and other production equipment during a model changeover .This annual tradition was necessary because rewiring of the panels was more expensive than buying new ones.The automotive companies approached a number of control equipment manufactures and asked them to develop a control system that would have a longer productive life without major rewiring , but would still be understandable to and repairable by plant personnel. The new product was named a “programmable controller”.The processor part of the PLC contains a central processing unit and memory .The central processing unit (CPU) is the “traffic director” of the processor, the memory stores information. Coming into the processor are the electrical signals from the input devices, as conditioned by the input module to voltage levels acceptable to processor logic . The processor scans the state of I/O and updates outputs based on instructions stored in the memory of the PLC .For example, the processor may be programmed so that if an input connected to a limit switch is true (limit switch closed),then a corresponding output wired to an output module is to be energized.This output might be a solenoid, for example . The processor remembers this command through its memory and compares on each scan to see if that limit switch is , in fact, closed . If it is closed, the processor energizes the solenoid by turning on the output module.The output device ,such as a solenoid or motor starter, is wired to an output modules terminal, and it receives its shift signal from the processor, in effect, the processor is performing a long and complicated series of logic decisions. The PLC performs such decisions sequentially and in accordance with the stored program. Similarly, analog I/O allows the processor to make decisions based on the magnitude of a signal, rather than just if it is on or off. For example ,the processor may be programmed to increase or decrease the steam flow to a boiler (analog output) based on a comparison of the actual temperature in the boiler (analog input) to the desired temperature. This is often performed by utilizing the built-in PID (proportional, integral, derivative) capabilities of the processor.Because a PLC is “software based”, ifs control logic functions can be changed by reprogramming its memory. Keyboard programming devices facilitate entry of the revised program, which can be designed to cause an existing machine or process to operate in a different sequence or to respond to different levels of, or combinations of stimuli. Hardware modifications are needed only if additional, changed, or relocated input/output devices are involved. 生產自動化生產自動化介紹 自動化是一個在制造成業(yè)中廣泛使用的術語。文中,自動化可被定義為有關應用機械、電子和計算機的系統(tǒng)去管理和控制生產的技術。這種技術的例子包括:加工零件的自動化機床。自動連續(xù)生產線和類似的順序生產系統(tǒng)。自動化裝配機器。工業(yè)機器人。自動材料處理和儲存系統(tǒng)。用于質量控制的自動檢驗系統(tǒng)。反饋控制和計算機程序控制。使支持制造業(yè)活動的計劃、數(shù)據(jù)收集和決策的過程自動化的計算機系統(tǒng)。自動化生產系統(tǒng)可被化分為兩個基本類別:硬性自動化和可編程序自動化。硬性自動化硬性自動化是哈德爾(Harder)杜撰“自動化”這個單詞時所提出的。硬性自動化是指生產系統(tǒng)中開關順序或裝配工作由設備配置確定,并且在沒更換設備的情況下不能輕易改變。雖然順序中的每一個操作通常是簡單的,但是,將許多簡單的操作集成和協(xié)調成一個單一系統(tǒng)使硬性自動化變得復雜化。硬性自動化的典型特點包括:1 定做設計設備的先期投資高,2 高生產效率,3 應用于大批量產品生產,和4 適應產品變更的相對固定性。硬性自動化對高需求率產品是經(jīng)濟合適的。先期設備的高投入可以被大量部件分攤,也許是數(shù)百萬件,這樣與其他生產方法相比部件花費低。硬件自動化的例子包括加工連續(xù)生產線、轉盤換位機械和自動裝配機器。硬性自動化的大部分技術是在汽車工業(yè)中發(fā)展起來的;連續(xù)生產線(追溯到大約1920年)就是一個例子??删幊套詣踊瘜τ诳删幊套詣踊杂沙绦?,即一套可以被系統(tǒng)識別和解釋的編碼指令來控制生產操作工序的方式來設計設備。這樣就可毫無困難地改變操作順序以允許在同一設備上生產不同的產品結構。表現(xiàn)可編程自動化的一些特性包括:1 通用可編程設備的高投入,2比硬性自動化更低的生產率,3應付產品結構變化的柔性,和4,適合于類似產品或零件的小和/或中等產量的生產(例如,零件族)。可編程自動化的例子包括數(shù)控機床、工業(yè)機器人和可編程邏輯控制器。可編程生產系統(tǒng)經(jīng)常用于成批的生產零件或產品。它們尤其適合于相同產品成批的重復訂單。為了生產一批新產品,必須為系統(tǒng)編制與新產品相適應的一套機器指令。設備的實際裝備也必須改變,必須給機器附加特殊的夾具,必須裝上適當?shù)牡毒?。這種轉換過程式可能是耗時的。結果,一批特定產品的一般生產周期包括1完成準備和重編程的階段和2 該批產品的加工階段。設置-重編程階段構成了自動化系統(tǒng)的非生產時間??删幊套詣踊慕?jīng)濟要求:隨著設置-重編程時間增長,生產批量的大小必須被編得較大以便在眾多設備中分散損失的生產時間的消耗。相反,如果設置和重編程時間能降低到零,則批量的大小可降至一個。這是柔性自動化的理論基礎,即可編程自動化的延伸。柔性自動化系統(tǒng)是從一個產品轉產到另一個產品時,時間損失最少的能生產許多種類產品(或零件)的系統(tǒng)。系統(tǒng)重編程和改變實際裝備的時間是最少的,并且事實上導致無生產時間損失。因此,系統(tǒng)能在連續(xù)流程中生產不同的產品組合和進程,而不是批處理間有中斷的批處理生產。柔性自動化的特點包括:1用于工程定制系統(tǒng)的高投資2連續(xù)的產品混合生產。3改變產品混合以適應對所生產的不同產品的需求率能力,4中等生產率,和5處理產品設計變更具有柔性。柔性自動化生產系統(tǒng)通過下面一個或更多的途徑應用于實踐中:1使用零件族概念,根據(jù)此概念系統(tǒng)中制造的零件在種類上有限制;2預先,并且/或離線對系統(tǒng)再編程以便再編程不會中斷生產;3下載已有程序到系統(tǒng)中來生產以前制造過的零件,為這些零件已編寫過程序;4使用快速裝卸的夾具以便最大限度地縮短實際裝備時間;5使用為有限零件類型所設計的夾具族;和6給系統(tǒng)裝配大量的快速裝卸刀具,它們包括用來生產零件族的各式各樣的加工操作工具。為了實現(xiàn)這些應用,在柔性自動化生產系統(tǒng)上生產的零件類型的變化通常比批處理類型的可編程自動化系統(tǒng)要局限的多。柔性自動化生產系統(tǒng)的例子可追溯到20世紀60年代晚期的進行機加工操作的柔性制造系統(tǒng)。數(shù)字控制數(shù)字控制(常縮寫為數(shù)控)可定義為一種可編程自動化的形式,其中工藝是由數(shù)字、字母和符號來控制的。在數(shù)控中,數(shù)字構成了為某特定工件或任務設計的指令程序。當任務變更時,指令程序也相應改變,改變每種新任務程序的能力使數(shù)控具有柔性。編寫新程序比改變主要生產設備要容易得多。數(shù)控設備用于所有的金屬零件制造領域,在當今工業(yè)的現(xiàn)代機床中大約占15%。因為數(shù)控機床比傳統(tǒng)機床昂貴得多,工業(yè)數(shù)控機床資產價值比起他們的所占比值來要大得多。應用數(shù)控的設備已被用來定然成各式各樣的操作,如鉆削、銑削、車削、磨削、鈑金壓制、點焊、弧焊、鉚接、裝配、制圖、檢驗及零件處理等。這絕不是一個完全的列舉。應把數(shù)字控制看成一種加工控制的可行方法,用于具有下列特點的任何生產情況:1 用原材料加工類似工件(如用于機加工的金屬材料)。2 工件被生產成各種尺寸和形狀。3 以小到中等規(guī)模批量生產工件。4 完成每個工件的加工要求一系列的相似加工步驟。許多機加工零件滿足這些條件。這些機加工零件是金屬的,給它們規(guī)定了不同的尺寸和形狀,而且當今工業(yè)生產的大部分機加零件被制成小到中等規(guī)模的多種尺寸。為了生產第一個零件,需要一系列的鉆削操作或一系列的車削或銑削操作。數(shù)字控制對這引起零件的適應性是數(shù)字控制在過去25年中在金屬制造業(yè)中巨大增大的原因。數(shù)字控制系統(tǒng)的基本部件一個可操作的數(shù)字控制系統(tǒng)由下列三個基本部件組成:1. 指令程序。2. 控制器單元,也稱為機床控制單元。3. 機床或其他被控工藝。指令程序 指令程序是告訴機床如何去工作的一套詳盡的一步步的指令集。它被以數(shù)字或符號的形式編碼在一些可以被控制器單元翻譯的輸入介質上。最常用的輸入介質是1英寸寬的穿孔帶。在這些年中,也使用了其他形式的輸入介質,包括穿孔片、磁帶、甚至35mm電影膠片。 還有其他兩種向數(shù)字控制系統(tǒng)進行輸入的方法必須提及。第一種是用手工將指令數(shù)據(jù)輸入到控制器單元。這是費時的,除非作為輔助控制手段或只制造成一個或非常有限數(shù)目的零件時,一般很少用。第二種輸入方法是與計算機直接相連。這叫做直接數(shù)字控制或DNC。 指令程序是由被稱為部件工作程序員的人編寫的。程序員的工伯是提供一套詳細的指令,通過這些指令可完成一系列加工步驟。對一個機加工操作,加工步驟包括機床臺面和刀具的相對運動,控制器單元 數(shù)控的第二個基本元件是控制器單元 。這由可以閱讀和翻譯指令程
收藏