液壓上料抓取件機械手設計【液壓機械手含6張CAD圖紙優(yōu)秀課程畢業(yè)設計】
《液壓上料抓取件機械手設計【液壓機械手含6張CAD圖紙優(yōu)秀課程畢業(yè)設計】》由會員分享,可在線閱讀,更多相關《液壓上料抓取件機械手設計【液壓機械手含6張CAD圖紙優(yōu)秀課程畢業(yè)設計】(34頁珍藏版)》請在裝配圖網上搜索。
充值購買 費領取圖 紙 液壓機械手的設計 摘 要 本次設計的液壓傳動機械手根據(jù)規(guī)定的動作順序,綜合運用所學的基本理論、基本知識和相關的機械設計專業(yè)知識,完成對機械手的設計,并繪制必要裝配圖、液壓系統(tǒng)圖、 制系統(tǒng)原理圖。機械手的機械結構采用油缸、螺桿、導向筒等機械器件組成;在液壓傳動機構中,機械手的手臂伸縮采用伸縮油缸,手腕回轉采用回轉油缸,立柱的轉動采用齒條油缸,機械手的升降采用升降油缸,立柱的橫移采用橫向移動油缸;在 制回路中,采用的型為 按下連續(xù)啟動后, 指定的程序,通過控制電磁閥的開 關來控制機械手進行相應的動作循環(huán),當按下連續(xù)停止按鈕后,機械手在完成一個動作循環(huán)后停止運動。 本設計擬開發(fā)的上料機械手可在空間抓放物體,動作靈活多樣,可代替人工在高溫和危險的作業(yè)區(qū)進行作業(yè),可抓取重量較大的工件。 關鍵詞 機械手、液壓、控制回路、 充值購買 費領取圖 紙 of of of to In of of LC in of to a of to of of on up in 充值購買 費領取圖 紙 目 錄 1 前言 業(yè)機器人簡介 1) 界機器 人的發(fā)展 1) 國工業(yè)機器人的發(fā)展 2) 要設計的機械手 2) 力的確定 2) 作范圍的確定 2) 定運動速度 3) 臂的配置形式 3) 置檢測裝置的選擇 4) 動與控制方式的選擇 4) 2 手部結構 4) 述 4) 計時應考慮的幾個問題 4) 動力的計算 5) 支點回轉式鉗爪的定位誤差的分析 7) 3 腕部的結構 8) 述 8) 部的結構形式 8) 腕驅動力矩的計算 9) 4 臂部的結構 12) 述 12) 臂直線運動機構 12) 臂伸縮運動 12) 導向裝置 13) 臂的升降運動 14) 臂回轉運動 15) 臂的橫向移動 16) 部運動驅動力計算 16) 水平伸縮運動驅動力的計算 16) 垂直升降運動驅動力的計算 17) 部回轉運動驅動力矩的計算 17) 5 液壓系統(tǒng)的設計 18) 壓系統(tǒng)簡介 18) 壓系統(tǒng)的組成 18) 械手液壓系統(tǒng)的控制回路 18) 壓力控制回路 18) 速度控制回路 19) 向控制回路 19) 充值購買 費領取圖 紙 械手的液壓傳動系統(tǒng) 20) 料機械手的動作順序 20) 動上料機械手液壓系統(tǒng)原理介紹 20) 械手液壓系統(tǒng)的簡單計算 23) 作用單桿活塞油缸 23) 桿活塞油缸(亦稱齒條活塞油缸) 26) 葉片回轉油缸 27) 泵的選擇 28) 定油泵電動機功率 N 29) 6 結束語 29) 7 致謝 30) 8 參考文獻 30) 充值購買 費領取圖 紙 1 前言 業(yè)機器人簡介 幾千年前人類就渴望制造一種像人一樣的機器,以便將人類從繁重的勞動中解脫出來。如古希臘神話阿魯哥探險船中的青銅巨人泰洛斯( 猶太傳說中的泥土巨人等等,這些美麗的神話時刻激勵著人們一定要把美麗的神話變?yōu)楝F(xiàn)實,早在兩千年前就開始出現(xiàn)了自動木人和一些簡單的機械偶人。 到了近代 ,機器人一詞的出現(xiàn)和世界上第一臺工業(yè)機器人問世之后,不同功能的機器人也相繼出現(xiàn)并且活躍在不同的領域,從天上到地下,從工業(yè)拓廣到 農業(yè)、林、牧、漁,甚至 進入尋常百姓家。機器人的種類之多,應用之廣,影響之深,是我們始料未及的。 工業(yè)機器人由操作機(機械本體)、控制器、伺服驅動系統(tǒng)和檢測傳感裝置構成,是一種仿人操作、自動控制、可重復編程、能在三維空間完成各種作業(yè)的機電一體化自動化生產設備。特別適合于多品種、變批量的柔性生產。它對穩(wěn)定、提高產品質量,提高生產效率,改善勞動條件和產品的快速更新?lián)Q代起著十分重要的作用。 機器人并不是在簡單意義上代替人工的勞動,而是綜合了人的特長和機器特長的一種擬人的電子機械裝置,既有人對環(huán)境狀態(tài)的快速反應和分析判斷能力,又有機器可 長時間持續(xù) 工作、精確度高、抗惡劣環(huán)境的能力,從某種意義上說它也是機器的進化過程產物,它是工 業(yè)以及非產業(yè)界的重要生產和服務性設備,也是先進制造技術領域不可缺少的自動化設備。 界機器人的發(fā)展 國外機器人領域發(fā)展近幾年有如下幾個趨勢: ( 1) . 工業(yè)機器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機價格不斷下降,平均單機價格從 91 年的 10 3 萬美元降至 97 年的 6 5 萬美元。 ( 2)機械結構向模塊化、可重構化發(fā)展。例如關節(jié)模塊中的伺服電機、減速機、檢測系統(tǒng)三位一體化;由 關節(jié)模塊、連桿模塊用重組方式構造機器人整機;國外已有模塊化裝配機器人產品問市。 ( 3)工業(yè)機器人控制系統(tǒng)向基于 的開放型控制器方向發(fā)展,便于標準化、網絡化;器件集成度提高,控制柜日見小巧,且采用模塊化結構;大大提高了系統(tǒng)的可靠性、易操作性和可維修性。 ( 4)機器人中的傳感器作用日益重要,除采用傳統(tǒng)的位置、速度、加速度等傳感器外,裝配、焊接機器人還應用了視覺、力覺等傳感器,而遙控機器人則采用視覺、聲覺、力覺、觸覺等多傳感器的融合技術來進行環(huán)境建模及決策控制;多傳感器融合配置技術在產品化系統(tǒng)中已有成熟應 用。 ( 5)虛擬現(xiàn)實技術在機器人中的作用已從仿真、預演發(fā)展到用于過程控制,如使遙控機器人操作者產生置身于遠端作業(yè)環(huán)境中的感覺來操縱機器人。 ( 6)當代遙控機器人系統(tǒng)的發(fā)展特點不是追求全自治系統(tǒng),而是致力于操作者與機器人的人機交互控制,即遙控加局部自主系統(tǒng)構成完整的監(jiān)控遙控操作系統(tǒng),使智能機器人走出實驗室進入實用化階段。美國發(fā)射到火星上的 “索杰納 ”機器人就是這種系統(tǒng)成功應用的最著名實例。 充值購買 費領取圖 紙 (7)機器人化機械開始興起。從 94 年美國開發(fā)出 “虛擬軸機床 ”以來,這種新型裝置已成為國際研究的熱點之一,紛紛探索開拓 其實際應用的領域 。 國工業(yè)機器人的發(fā)展 有人認為,應用機器人只是為了節(jié)省勞動力,而我國勞動力資源豐富,發(fā)展機器人不一定符合我國國情。這是一種誤解。在我國,社會主義制度的優(yōu)越性決定了機器人能夠充分發(fā)揮其長處。它不僅能為我國的經濟建設帶來高度的生產力和巨大的經濟效益,而且將為我國的宇宙開發(fā)、海洋開發(fā)、核能利用等新興領域的發(fā)展做出卓越的貢獻。 我國的工業(yè)機器人從 80 年代 “七五 ”科技攻關開始起步,在國家的支持下,通過 “七五 ”、 “八五 ”科技攻關,目前已基本掌握了機器人操作機的設計制造技術、控制系統(tǒng)硬件和 軟件設計技術、運動學和軌跡規(guī)劃技術,生產了部分機器人關鍵元器件,開發(fā)出噴漆、弧焊、點焊、裝配、搬運等機器人;其中有 130 多臺套噴漆機器人在二十余家企業(yè)的近 30 條自動噴漆生產線(站)上獲得規(guī)模應用,弧焊機器人已應用在汽車制造廠的焊裝線上。但總的來看,我國的工業(yè)機器人技術及其工程應用的水平和國外比還有一定的距離,如:可靠性低于國外產品;機器人應用工程起步較晚,應用領域窄,生產線系統(tǒng)技術與國外比有差距;在應用規(guī)模上,我國已安裝的國產工業(yè)機器人約 200 臺,約占全球已安裝臺數(shù)的萬分之四。以上原因主要是沒有形成機器人產 業(yè),當前我國的機器人生產都是應用戶的要求,“一客戶,一次重新設計 ”,品種規(guī)格多、批量小、零部件通用化程度低、供貨周期長、成本也不低,而且質量、可靠性不穩(wěn)定。因此迫切需要解決產業(yè)化前期的關鍵技術,對產品進行全面規(guī)劃,搞好系列化、通用化、?;O計,積極推進產業(yè)化進程。 我國的智能機器人和特種機器人在 “863”計劃的支持下,也取得了不少成果。其中最為突出的是水下機器人, 6000 米水下無纜機器人的成果居世界領先水平,還開發(fā)出直接遙控機器人、雙臂協(xié)調控制機器人、爬壁機器人、管道機器人等機種;在機器人視覺、力覺、觸覺、 聲覺等基礎技術的開發(fā)應用上開展了不少工作,有了一定的發(fā)展基礎。但是在多傳感器信息融合控制技術、遙控加局部自主系統(tǒng)遙控機器人、智能裝配機器人、機器人化機械等的開發(fā)應用方面則剛剛起步,與國外先進水平差距較大,需要在原有成績的基礎上,有重點地系統(tǒng)攻關,才能形成系統(tǒng)配套可供實用的技術和產品,以期在 “十五 ”后期立于世界先進行列之中。 要設計的機械手 力的確定 目前使用的機械手的臂力范圍較大,國內現(xiàn)有的機械手的臂力最小為 大為 8000N。本液壓機械手的臂力為 N 臂 =1650( N),安全系數(shù) K 一般可在 ,本機械手取安全系數(shù) K=2。定位精度為 1 作范圍的確定 機械手的工作范圍根據(jù)工藝要求和操作運動的軌跡來確定。一個操作運動的軌跡是幾個動作的合成,在確定的工作范圍時,可將軌跡分解成單個的動作,由單個動作的行程確定機械手的最大行程。 充值購買 費領取圖 紙 本機械手的動作范圍確定如下: 手腕回轉角 度 115 手臂伸長量 150臂回轉角度 115 手臂升降行程 170臂水平運動行程 100 確定運動速度 機械手各 動作的最大行程確定之后,可根據(jù)生產需要的工作拍節(jié)分配每個動作的時間,進而確定各動作的運動速度。液壓上料機械手要完成整個上料過程,需完成夾緊工件、手臂升降、伸縮、回轉,平移等一系列的動作,這些動作都應該在工作拍節(jié)規(guī)定的時間內完成,具體時間的分配取決于很多因素,根據(jù)各種因素反復考慮,對分配的方案進行比較,才能確定。 機械手的總動作時間應小于或等于工作拍節(jié),如果兩個動作同時進行,要按時間長的計算,分配各動作時間應考慮以下要求: 給定的運動時間應大于電氣、液壓元 件的執(zhí)行時間; 伸縮運動的速度要大于回轉運動的速度,因為回轉運動的慣性一般大于伸縮運動的慣性。在滿足工作拍節(jié)要求的條件下,應盡量選取較底的運動速度。機械手的運動速度與臂力、行程、驅動方式、緩沖方式、定位方式都有很大關系,應根據(jù)具體情況加以確定。 在工作拍節(jié)短、動作多的情況下,常使幾個動作同時進行。為此驅動系統(tǒng)要采取相應的措施,以保證動作的同步。 液壓上料機械手的各運動速度如下: 手腕回轉速度 V 腕回 = 40/s 手臂伸縮速度 V 臂伸 = 50 mm/s 手臂回轉速度 V 臂回 = 40/s 手臂升降速度 V 臂升 = 50 mm/s 立柱水平運動速度 V 柱移 = 50 mm/s 手指夾緊油缸的運動速度 V 夾 = 50 mm/s 臂的配置形式 機械手的手臂配置形式基本上反映了它的總體布局。運動要求、操作 環(huán)境、工作對象的不同,手臂的配置形式也不盡相同。本機械手采用機座式。機座式結構多為工業(yè)機器人所采用,機座上可以裝上獨立的控制裝置,便于搬運與安放,機座底部也可以安裝行走機構,已擴大其活動范圍,它分為手臂配置在機座頂部與手臂配置在機座立柱上兩種形式,本機械手采用手臂配置在機座立柱上的形式。手臂配置在機座立柱上的機械手多為圓柱坐標型,它有升降、伸縮與回轉運動,工作范圍較大。 充值購買 費領取圖 紙 置檢測裝置的選擇 機械手常用的位置檢測方式有三種:行程開關式、模擬式和數(shù)字式。本機械手采用行程開關式。利用行程 開關檢測位置,精度低,故一般與機械擋塊聯(lián)合應用。在機械手中,用行程開關與機械擋塊檢測定位既精度高又簡單實用可靠,故應用也是最多的。 動與控制方式的選擇 機械手的驅動與控制方式是根據(jù)它們的特點結合生產工藝的要求來選擇的,要盡量選擇控制性能好、體積小、維修方便、成本底的方式。 控制系統(tǒng)也有不同的類型。除一些專用機械手外,大多數(shù)機械手均需進行專門的控制系統(tǒng)的設計。 驅動方式一般有四種:氣壓驅動、液壓驅動、電氣驅動和機械驅動。 參考工業(yè)機器人表 9表 9按照設計要求,本機械手采用的驅動方式為液壓驅動,控制方式為固定程序的 制。 2 手部結構 述 手部是機械手直接用于抓取和握緊工件或夾持專用工具進行操作的部件,它具有模仿人手的功能,并安裝于機械手手臂的前端。機械手結構型式不象人手,它的手指形狀也不象人的手指、,它沒有手掌,只有自身的運動將物體包住,因此,手部結構及型式根據(jù)它的使用場合和被夾持工件的形狀,尺寸,重量,材質以及被抓取部位等的不同而設計各種類型的手部結構,它一般可分為鉗爪式,氣吸式,電磁式和其他型式。鉗爪式手部結構由手指和傳力機構 組成。其傳力機構形式比較多,如滑槽杠桿式、連桿杠桿式、斜楔杠桿式、齒輪齒條式、彈簧杠桿式 等,這里采用滑槽杠桿式。 計時應考慮的幾個問題 應具有足夠的握力(即夾緊力) 在確定手指的握力時,除考慮工件重量外,還應考慮在傳送或操作過程中所產生的慣性力和振動,以保證工件不致產生松動或脫落。 手指間應有一定的開閉角 兩個手指張開與閉合的兩個極限位置所夾的角度稱為手指的開閉角。手指的開閉角保證工件能順利 進入或脫開。若夾持不同直徑的工件,應按最大直徑的工件考慮。 應保證工件的準確定位 為使手指和被夾持工件保持準確的相對位置,必須根據(jù)被抓取工件的形狀,選擇相應的手指形狀。例如圓柱形工件采用帶 V形面的手指,以便自動定心。 應具有足夠的強度和剛度 手指除受到被夾持工件的反作用力外,還受到機械手在運動過程中所產生的慣性力和振動的影響,要求具有足夠的強度和剛度以防止折斷或彎曲變形,但應盡量使結構簡單緊湊,自 重輕。 應考慮被抓取對象的要求 充值購買 費領取圖 紙 應根據(jù)抓取工件的形狀、抓取部位和抓取數(shù)量的不同,來設計和確定手指的形狀。 動力的計算 圖 1 滑槽杠桿式手部受力分析 如圖所示為滑槽式手部結構。在拉桿 3 作用下銷軸 2 向上的拉力為 P,并通過銷軸中心 O 點,兩手指 1 的滑槽對銷軸的反作用力為 其力的方向垂直于滑槽中心線 指向O 點 , 延長線交 A 及 B, 由于 為直角三角形 , 故 。 根據(jù)銷軸的力平衡條件,即 ,2; P=21=P/2軸對手指的作用力為 手指握緊工件時所需的力稱為握力(即夾緊力),假想握力作用在 充值購買 費領取圖 紙 過手指與工件接觸面的對稱平面內,并設兩力的大小相等,方向相反,以 N 表示。由手指的力矩平衡條件,即 )=0 得 P1h= h=a/所以 P=2b( N/a 式中 a手指的回轉支點到對稱中心線的距離(毫米)。 工件被夾緊時手指的滑槽方向與兩回轉支點連線間的夾角。 由上式可知,當驅動力 P 一定時, 角增大則握力 N 也隨之增加,但 角過大會導致拉桿(即活塞)的行程過大,以及手指滑槽尺寸長度增大,使之結構加大,因此,一般取 =3040。這里取角 =30度。 這種手部結構簡單 ,具有動作靈活,手指開閉角大等特點。查工業(yè)機械手設計基礎中表2知, V 形手指夾緊圓棒料時,握力的計算公式 N=合前面驅動力的計算方法,可求出驅動力的大小。為了考慮工件在傳送過程中產生的慣性力、振動以及傳力機構效率的影響,其實際的驅動力 P 實際應按以下公式計算,即: P 實際 = 式中 手部的機械效率,一般取 安全系數(shù),一般取 工作情況系數(shù),主要考慮慣性力的影響, 近似按下式估計, +a/g,其中 a 為被抓取工件運動時的最大加速度, g 為重力加速度。 本機械手的工件只做水平和垂直平移,當它的移動速度為 500 毫米 /秒,移動加速度為 1000 毫米/秒 2 ,工件重量 G 為 98 牛頓, V 型鉗口的夾角為 120,=30時,拉緊油缸的驅動力 P 和 P 實際計算如下: 根據(jù)鉗爪夾持工件的方位,由水平放置鉗爪夾持水平放置的工件的當量夾緊力計算公式 N=已知條件代入得當量夾緊力為 N=49( N) 由滑槽杠桿式結構的驅動力計算公式 P=2b( N/a 得 P=P 計算 =2*45/27(2 *49=) 充值購買 費領取圖 紙 P 實際 =P 計算 取 = +1000/9810 P 實際 =38(N) 支點回轉式 鉗爪的定位誤差的分析 圖 2 帶浮動鉗口的鉗爪 鉗口與鉗爪的連接點 E 為鉸鏈聯(lián)結 ,如圖示幾何關系 ,若設鉗爪對稱中心 O 到工件中心 O的距離為x,則 x= 22 )s 當工件直徑變化時 ,x 的變化量即為定位誤差 ,設工件半徑 R 由 化到 ,其最大定位誤差為 = 22 )s x /( - 22 )s ( 其中 l=45b=5a=272 =120 ,50入公式計算得 最大定位誤差 = = 充值購買 費領取圖 紙 故符合要求 . 3 腕部的結構 述 腕部是連接手部與臂部的部件,起支承手部的作用。設計腕部時要注意以下幾點: 結構緊湊,重量盡量輕。 轉動靈活,密封性要好。 注意解決好腕部也手部、臂部的連接,以及各個自由度的位置檢測、管線的布置以及潤滑、維修、調整等問題 要適應工作環(huán)境的需要。 另外,通 往手腕油缸的管道盡量從手臂內部通過,以便手腕轉動時管路不扭轉和不外露,使外形整齊。 部的結構形式 本機械手采用回轉油缸驅動實現(xiàn)腕部回轉運動,結構緊湊、體積小,但密封性差,回轉角度為115. 如下圖所示為腕部的結構,定片與后蓋,回轉缸體和前蓋均用螺釘和銷子進行連接和定位,動片與手部的夾緊油缸缸體用鍵連接。夾緊缸體也指座固連成一體。當回轉油缸的兩腔分別通入壓力油時,驅動動片連同夾緊油缸缸體和指座一同轉動,即為手腕的回轉運動。 充值購買 費領取圖 紙 圖 3 機 械手的腕部結構 腕驅動力矩的計算 驅動手腕回轉時的驅動力矩必須克服手腕起動時所產生的慣性力矩必須克服手腕起動時所產生的慣性力矩,手腕的轉動軸與支承孔處的摩擦阻力矩,動片與缸徑、定片、端蓋等處密封裝置的摩擦阻力矩以及由于轉動的重心與軸線不重合所產生的偏重力矩。手腕轉動時所需要的驅動力矩可按下式計算: M 驅 =M 慣 +M 偏 +M 摩 ( 式中 M 驅 驅動手腕轉動的驅動力矩 M 慣 慣性力矩 ( M 偏 參與轉動的零部件的重量(包括工件、手部、手腕回轉缸體的動片)對轉動軸線所產生的偏重力矩 ( M 摩 手腕轉動軸與支承孔處的摩擦力矩 ( 充值購買 費領取圖 紙 圖 4 腕部回轉力矩計算圖 摩擦阻力矩 M 摩 M 摩 =2f( 2 ( 式中 f軸承的摩擦系數(shù),滾動軸承取 f=動軸承取 f= 軸承支承反力 ( N) ; 軸承直徑 ( m) 由設計知 00N 00N 8N e=M 摩 = 200*00*( 工件重心偏置力矩引起的偏置力矩 M 偏 M 偏 =G1 e ( 式中 工件重量( N) e偏心距(即工件重心到碗回轉中心線的垂直距離),當工件重心與手腕回轉中心線重合 充值購買 費領取圖 紙 時 , M 偏 為零 當 e=8N 時 M 偏 = Nm) 腕部啟動時的慣性阻力矩 M 慣 當知道手腕回轉角速度 時,可用下式計算 M 慣 M 慣 =( J+J 工件 )t( Nm) 式中 手腕回轉角速度 ( 1/s) T手腕啟動過程中所用時間( s),(假定啟動過程中近為加速運動) J手腕回轉部件對回轉軸線的轉動慣量( kg J 工件 工件對 手腕回轉軸線的轉動慣量 ( kg 按已知計算得 J=J 工件 = =t=2 故 M 慣 = Nm) 當知道啟動過程所轉過的角度 時,也可以用下面的公式計算 M 慣: M 慣 =( J+J 工件 )22 ( Nm) 式中 啟動過程所轉過的角度( ; 手腕回轉角速度 ( 1/s)。 考慮到驅動缸密封摩擦損失等因素,一般將 M 取大一些,可取 M = M 慣 +M 偏 +M 摩 ) ( M = = 充值購買 費領取圖 紙 4 臂部的結構 述 臂部是機械手的主要執(zhí)行部件,其作用是支承手部和腕部,并將被抓取的工件傳送到給定位置和方位上,因而一般機械手的手臂有三個自由度,即手臂的伸縮、左右回轉和升降運動。手臂的回轉和升降運動是通過立柱來實現(xiàn)的。;立柱的橫向移動即為手臂的橫向移動。手臂的各種運動通常由驅動機構和各種傳動機構來實現(xiàn),因此,它不僅僅承受被抓取工件的重量,而且承受手部、手腕、和手臂自身的重量。手臂的結構、工作范圍、靈活性以及抓重大小(即臂力 )和定位精度等都直接影響機械手的工作性能,所以必須根據(jù)機械手的抓取重量、運動形式、自由度數(shù)、運動速度及其定位精度的要求來設計手臂的結構型式。同時,設計時必須考慮到手臂的受力情況、油缸及導向裝置的布置、內部管路與手腕的連接形式等因素。因此設計臂部時一般要注意下述要求: 剛度要大 為防止臂部在運動過程中產生過大的變形,手臂的截面形狀的選擇要合理。弓字形截面彎曲剛度一般比圓截面大;空心管的彎曲剛度和扭曲剛度都比實心軸大得多。所以常用鋼管作臂桿及導向桿,用工字鋼和槽鋼 作支承板。 導向性要好 為防止手臂在直線移動中,沿運動軸線發(fā)生相對運動,或設置導向裝置,或設計方形、花鍵等形式的臂桿。 偏重力矩要小 所謂偏重力矩就是指臂部的重量對其支承回轉軸所產生的靜力矩。為提高機器人的運動速度,要盡量減少臂部運動部分的重量,以減少偏重力矩和整個手臂對回轉軸的轉動慣量。 運動要平穩(wěn)、定位精度要高 由于臂部運動速度越高、重量越大,慣性力引起的定位 前的沖擊也就越大,運動即不平穩(wěn),定位精度也不會高。故應盡量減少小臂部運動部分的重量,使結構緊湊、重量輕,同時要采取一定的緩沖措施。 臂直線運動機構 機械手手臂的伸縮、升降及橫向移動均屬于直線運動,而實現(xiàn)手臂往復直線運動的機構形式比較多,常用的有活塞油(氣)缸、活塞缸和齒輪齒條機構、絲桿螺母機構以及活塞缸和連桿機構。 臂伸縮運動 這里實現(xiàn)直線往復運動是采用液壓驅動的活塞油缸。由于活塞油缸的體積小、重量輕,因而在機械手的手臂機構中應用比較多。如下圖所示為雙導向桿手臂的伸 縮結構。手臂和手腕是通過連接板安裝在升降油缸的上端,當雙作用油缸 1 的兩腔分別通入壓力油時,則推動活塞桿 2(即手臂)作往復直線運動。導向桿 3 在導向套 4 內移動,以防止手臂伸縮時的轉動(并兼做手腕回轉缸 6 及手部 7 的夾緊油缸用的輸油管道)。由于手臂的伸縮油缸安裝在兩導向桿之間,由導向桿承受彎曲作用,活塞桿只受拉壓作用,故受力簡單,傳動平穩(wěn),外形整齊美觀,結構緊湊。可用于抓重大、行程較長的場合。 充值購買 費領取圖 紙 圖 5 雙導向桿手臂的伸縮結構 導向裝置 液壓驅動的機械手手臂在進行伸縮(或升降)運動時,為了防止手臂繞軸線發(fā)生轉動,以保證手指的正確方向,并使活塞桿不受較大的彎曲力矩的作用,以增加手臂的剛性,在設計手臂的結構時,必須采用適當?shù)膶蜓b置。它根據(jù)手臂的安裝形式,具體的結構和抓取重量等因素加以確定,同時在結構設計和布局上應盡量減少運動部件的重量和減少手臂對回轉中心的轉動慣量。目前采用的導向裝置有單導向桿、雙導向桿、四導向桿和其他的導向裝置,本機械手采用的是雙導向桿導向機構。 雙導向桿配置在手臂伸縮油缸兩側,并兼做手部和手腕油路的管道。 對于伸縮行程大的手臂,為了防止導向桿懸伸部分的彎曲變形,可在導向桿尾部增設輔助支承架,以提高導向桿的剛性。 如圖 5 所示,對于伸縮行程大的手臂,為了防止導向桿懸伸部分的彎曲變形,可在導向桿尾部增設輔助支承架,以提高導向桿的剛性。如圖 示,在導向桿 1 的尾端用支承架 4 將兩個導向桿連接起來,支承架的兩側安裝兩個滾動軸承 2,當導向桿隨同伸縮缸的活塞桿一起移動時,支承架上的滾動軸承就在支承板 3 的支承面上滾動。 充值購買 費領取圖 紙 圖 6 雙導向桿手臂 結構 臂的升降運動 如圖 6 所示為手臂的升降運動機構。當升降缸上下兩腔通壓力油時,活塞杠 4 做上下運動,活塞缸體 2 固定在旋轉軸上。由活塞桿帶動套筒 3 做升降運動。其導向作用靠立柱的平鍵 9 實現(xiàn)。圖中 6為位置檢測裝置。 充值購買 費領取圖 紙 圖 7 手臂升降和回轉機構圖 臂回轉運動 實現(xiàn)手臂回轉運動的機構形式是多種多樣的,常用的有回轉缸、齒輪傳動機構、鏈輪傳動機構、連桿機構等。本機械手采用齒條缸式臂回轉機構,如圖 6 所示,回轉運 動由齒條活塞桿 8 驅動齒輪,帶動配油軸和缸體一起轉動,再通過缸體上的平鍵 9 帶動外套一起轉動實現(xiàn)手臂的回轉。 臂的橫向移動 如圖 7 所示為手臂的橫向移動機構。手臂的橫向移動是由活塞缸 5 來驅動的,回轉缸體與滑臺 1用螺釘聯(lián)結,活塞桿 4 通過兩塊連接板 3 用螺釘固定在滑座 2 上。當活塞缸 5 通壓力油時,其缸體就帶動滑臺 1,沿著燕尾形滑座 2 做橫向往復運動。 充值購買 費領取圖 紙 圖 8 手臂橫向移動機構 部運動驅動力計算 計算臂部運動驅 動力(包括力矩)時,要把臂部所受的全部負荷考慮進去。機械手工作時,臂部所受的負荷主要有慣性力、摩擦力和重力等。 水平伸縮運動驅動力的計算 手臂做水平伸縮運動時,首先要克服摩擦阻力,包括油缸與活塞之間的摩擦阻力及導向桿與支承滑套之間的摩擦阻力等,還要克服啟動過程中的慣性力。其驅動力 按下式計算: N) 式中 各支承處的摩擦阻力; 啟動過程中的慣性力,其大小 可按下式估算: (N) 式中 W 手臂伸縮部件的總重量 ( N); 充值購買 費領取圖 紙 g 重力加速度( s 2 ) ; a 啟動過程中的平均加速度( m/s 2 ), 而 a = (m/s 2 ) v 速度變化量。如果手臂從靜止狀態(tài)加速到工作速度 V 時,則這個過程的速度變化量就等于手臂的工作速度; t 啟動過程中所用的時間,一般為 當 0N,W=1098( N), V = 500mm/s 時, 80+=80+112=192 (N) 垂直升降運動驅動力的計算 手臂作垂直運動時,除克服摩擦阻力 慣性力 外,還要克服臂部運動部件的重力,故其驅動力 按下式計算: W (N) 式中 各支承處的摩擦力( N); 啟動 時慣性力( N)可按臂伸縮運動時的情況計算; W臂部運動部件的總重量( N); 上升時為正,下降時為負。 當 0N, 00N, W =1098N 時 0+100+1098=1238( N) 部回轉運動驅動力矩的計算 臂部回轉運動驅動力矩應根據(jù)啟動時產生的慣性力矩與回轉部件支承處的摩擦力矩來計算。由于啟動過程一般不是等加速度運動,故最大驅動 力矩要比理論平均值大一些,一般取平均值的 。故驅動力矩 按下式計算: m + (Nm) 式中 各支承處的總摩擦力矩; 啟動時慣性力矩,一般按下式計算: (Nm) 式中 J手臂部件對其回轉軸線的轉動慣量( kgm 2 ) ; 回轉手臂的工作角速度( s) ; 充值購買 費領取圖 紙 t回轉臂啟動時間( s) 當 4(Nm), 2(Nm) 16=m) 對于活塞、導向套筒和油缸等的轉動慣量都要做 詳細計算,因為這些零件的重量較大或回轉半徑較大,對總的計算結果影響也較大,對于小零件則可作為質點計算其轉動慣量,對其質心轉動慣量忽略不計。對于形狀復雜的零件,可劃分為幾個簡單的零件分別進行計算,其中有的部分可當作質點計算??梢詤⒖脊I(yè)機器人表 4 5 液壓系統(tǒng)的設計 壓系統(tǒng)簡介 機械手的液壓傳動是以有壓力的油液作為傳遞動力的工作介質。電動機帶動油泵輸出壓力油,是將電動機供給的機械能轉換成油液的壓力能。壓力油經過管道及一些控制調節(jié)裝置等進入油缸,推動活塞桿運動,從而使手臂作伸縮、升 降等運動,將油液的壓力能又轉換成機械能。手臂在運動時所能克服的摩擦阻力大小,以及夾持式手部夾緊工件時所需保持的握力大小,均與油液的壓力和活塞的有效工作面積有關。手臂做各種運動的速度決定于流入密封油缸中油液容積的多少。這種借助于運動著的壓力油的容積變化來傳遞動力的液壓傳動稱為容積式液壓傳動,機械手的液壓傳動系統(tǒng)都屬于容積式液壓傳動。 壓系統(tǒng)的組成 液壓傳動系統(tǒng)主要由以下幾個部分組成: 油泵 它供給液壓系統(tǒng)壓力油,將電動機輸出的機械能轉換為油液的壓 力能,用這壓力油驅動整個液壓系統(tǒng)工作。 液動機 壓力油驅動運動部件對外工作部分。手臂做直線運動,液動機就是手臂伸縮油缸。也有回轉運動的液動機一般叫作油馬達,回轉角小于 360的液動機,一般叫作回轉油缸(或稱擺動油缸)。 控制調節(jié)裝置 各種閥類,如單向閥、溢流閥、節(jié)流閥、調速閥、減壓閥、順序閥等,各起一定作用,使機械手的手臂、手腕、手指等能夠完成所要求的運動。 械手液壓系統(tǒng)的控制回路 機械手的液壓系統(tǒng) ,根據(jù)機械手自由度的多少,液壓系統(tǒng)可繁可簡,但是總不外乎由一些基本控制回路組成。這些基本控制回路具有各種功能,如工作壓力的調整、油泵的卸荷、運動的換向、工作速度的調節(jié)以及同步運動等。 壓力控制回路 調壓回路 在采用定量泵的液壓系統(tǒng)中,為控制系統(tǒng)的最大工作壓力,一般都在油泵的出口附近設置溢流閥,用它來調節(jié)系統(tǒng)壓力,并將多余的油液溢流回油箱。 充值購買 費領取圖 紙 卸荷回路 在機械手各油缸不工作時,油泵 電機又不停止工作的情況下,為減少油泵的功率損耗,節(jié)省動力,降低系統(tǒng)的發(fā)熱,使油泵在低負荷下工作,所以采用卸荷回路。此機械手采用二位二通電磁閥控制溢流閥遙控口卸荷回路。 減壓回路 為了是機械手的液壓系統(tǒng)局部壓力降低或穩(wěn)定,在要求減壓的支路前串聯(lián)一個減壓閥,以獲得比系統(tǒng)壓力更低的壓力。 平衡與鎖緊回路 在機械液壓系統(tǒng)中,為防止垂直機構因自重而任意下降,可采用平衡回路將垂直機構的自重給以平衡。 為了使機械手手臂在移動過程中停止在任意位置上,并防止因外力作用而發(fā)生位移,可采用鎖緊回路,即將油缸的回油路關閉,使活塞停止運動并鎖緊。本機械手采- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 液壓 抓取 機械手 設計 CAD 圖紙 優(yōu)秀 課程 畢業(yè)設計
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-120843.html