《九年級數(shù)學(xué)上學(xué)期第一次月考試題 浙教版 (3)》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學(xué)上學(xué)期第一次月考試題 浙教版 (3)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2016學(xué)年第一學(xué)期九年級數(shù)學(xué)月考試卷
(參考公式:二次函數(shù)()的頂點坐標(biāo)();
一、選擇題(本題有10小題,每小題4分,共40分.每小題只有一個選項是正確的,不選、多選、錯選,均不給分)
1. 拋物線的開口向下,則a的值可能是( ▲ )
A.-1 B.2 C.0 D.1
2. 在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向左平移2個單位,所得到的圖象的解析式為( ▲ )
A. B. C. D.
3、下列說法錯誤的是( ▲ )
A、投擲一枚均勻的骰子,朝上一面的點數(shù)是3的概率是
B、不可能事件發(fā)生的概率為0
C、買一張彩票中獎是隨機事件
D、一個事件發(fā)生的概率為1%,這件事件就有可能發(fā)生
4. 拋物線的對稱軸是( ▲ )
A.直線x=1 B.直線x=-1 C.直線x=3 D.直線x=-3
5. 已知⊙O的半徑為5,OP的長為4,則點P與⊙O的位置關(guān)系是( ▲ )
A.點P在圓上 B. 點P在圓內(nèi) C. 點P在圓外 D. 無法確定的
6.直角三角形兩直角邊長分別為 和1,那么它的外接圓的半徑是( ▲ )
A、 1 B、2 C、 3 D、 4
7. 如圖,四邊形ABCD是⊙O的內(nèi)接四邊形.若∠A:∠B:∠C=1:2:4,則∠D為( ▲ ).
A、90 B、100 C、108 D、144
8.設(shè)A,B,C是拋物線上的三點,則,, 的大小關(guān)系為( ▲ )
A. B. C. D.
(第9題圖)
(第7題圖) (第10題圖)
9.如圖,已知正方形ABCD的邊長為1,分別以頂點A,B,C,D為圓心,1為
半徑畫弧,四條弧交于點E,F(xiàn),G,H,則圖中陰影部分的外圍周長為( ▲ )
A. B. C. D.
10.如圖,已知拋物線y=- x2 + x+3的圖像與y軸交于點B,點C是拋物線在第一象限上的一動點,若以BC為邊作正△ABC交y軸于點A,則點A的坐標(biāo)為( ▲?。?
A.(-1,0) B.(- ,0) C.(0,1) D.(0,)
二、填空題(本題有6小題,每小題5分,共30分)
11.拋物線的頂點坐標(biāo)_____________;
12.一個正多邊形的一個內(nèi)角是144,這個正多邊形是___________邊形;
13.對一批襯衣進(jìn)行抽檢,統(tǒng)計合格襯衣的件數(shù),得到合格襯衣的頻數(shù)表如下:
抽取件數(shù)(件)
50
100
200
500
800
1000
合格頻數(shù)
47
93
189
489
760
950
估計任抽一件襯衣是合格品的概率_____________;
14.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為4,則邊長BC的長為________;
第14題圖
(第15題圖) (第16題圖)
15. 如圖,點E是菱形ABCD的邊AB上一點,AB=4,∠DAB=60,過E的直線EF//AD交 AC、 CD于點P、F,過P的直線GH//AB交AD、BC于點G、H,設(shè)AE的長度為x,魚形(陰影部分)的面積為y,則y關(guān)于x的函數(shù)解析式是_________________________;
16.如圖,在Rt⊿AOB中,∠AOB=Rt∠,OA=OB=2,將⊿AOB繞點A按順時針旋轉(zhuǎn)至⊿AO’B’,使點O’落在以O(shè)為圓心,OA長為半徑的圓上,則⊿AOB’的面積是___________________.
三、解答題
17、(8分)計算:如圖,在⊙O中,∠ACB=30,AB=6
(1)填空:∠AOB=
(2) 求 的長(結(jié)果保留). 第17題圖
18.(本題8分)已知二次函數(shù)的圖象以為頂點,且過點.
(1)求該函數(shù)的關(guān)系式;(2)求該函數(shù)圖象與x軸的交點坐標(biāo);
19.(9分)不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個,黃球有1個,現(xiàn)從中任意摸出一個是白球的概率為.
(1)試求袋中藍(lán)球的個數(shù).
(2)第一次任意摸一個球(不放回),第二次再摸一個球,請用畫樹狀圖或列表格法,
求兩次摸到都是白球的概率.
第20題圖
20.(本題9分)如圖,已知點A,B的坐標(biāo)分別為(4,0),(3,2).
(1)將△AOB向上平移2個單位得到△A1O1B1 ,畫出△A1O1B1 ;
(2)將△AOB繞點O按逆時針方向旋轉(zhuǎn)90得到△A2OB2 ,畫出△A2OB2 ;
(3)在(2)的條件下,AB邊掃過的面積是 ▲ .(保留 )
21.(本題10分)如圖,以AB為直徑的⊙O中,CD是弦,CD//AB,連接AC,BD交于點M,
(1) 求證:AM=BM;
(2) 若⊙O的半徑為4,AC=2AD,求AD的長.
第21題圖
22.(本題10分)如圖,已知拋物線圖像經(jīng)過 A(-1,0),B(4,0)兩點.
(1)求b,c的值;
(2)若C(m,1-m)是拋物線上位于第四象限內(nèi)的點,D是線段AB上 的一個動點(不與A,B點重合),過點D分別作DE//BC交AC于E,DF//AC交BC于F.
?求證:四邊形DECF是矩形;
?連接EF,則線段EF的最小值為______________. 第22題圖
23. (本題12分)某商家銷售某種商品,每件進(jìn)價為40元,經(jīng)過市場調(diào)查發(fā)現(xiàn),一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件)
…
55
60
70
75
…
一周的銷售量y(件)
…
450
400
300
250
…
(1) 直接寫出y關(guān)于x的函數(shù)關(guān)系式:___________▲ ________
(2) 設(shè)一周的銷售利潤為S元,求S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3) 現(xiàn)商家決定將商品一周的銷售利潤全部寄往貧困地區(qū),在商家購進(jìn)該商品的成本不超過10000元情況下,請求出該商家最大捐款數(shù)額是多少元?
24.(本題14分)如圖,拋物線的圖像經(jīng)過點A、B、C,已知點A的坐標(biāo)為(-3,0),點B坐標(biāo)為(1,0),點C在y軸的正半軸,且∠CAB=30.
(1)求拋物線的函數(shù)解析式;
(2)若直線L:y=X+ m從點C開始沿y軸向下平移,分別交x軸、y軸于點D、E.
?當(dāng)m>0時,在線段AC上是否存在點P,使得點P、D、E構(gòu)成等腰直角三角形?若存在,求出m的值;若不存在,請說明理由。
?以動直線L為對稱軸,線段AC關(guān)于直線L的對稱線段A’C’與二次函數(shù)圖像有交點,請直接寫出m的取值范圍。
2016學(xué)年第一學(xué)期九年級第一次月答案
數(shù) 學(xué) 試 卷 2016.9
一、選擇題(本題有10小題,每小題4分,共40分.每小題只有一個選項是正確的,不選、多選、錯選,均不給分)
題號
1
2
3
4
5
6
7
8
9
10
答案
A
C
A
C
B
A
C
A
B
A
二、填空題(本題有6小題,每小題5分,共30分)
11.(2,3); 12.十 13.0.95 14. 4
16. 16.
三、解答題
17、(8分)(1)4’ ∠ AOB=600
(2) 4’
18.(本題8分)
(1)4’ 設(shè)二次函數(shù)的解析式為y=a(x-1)2+4
把(-2,-5)代入解析式,得:a=-1
∴二次函數(shù)的解析式為y=-(x-1)2+4
(2)4’ 當(dāng)y=0時,-(x-1)2+4=0
∴X1-=3, X2=-1
∴與X軸的交點坐標(biāo)為(3,0)(-1,0)
19.(9分)
(1)3’ 設(shè)藍(lán)球x個
∴ X=1 ∴籃球1個
(2)3’ 圖略 3’P=2/12=1/6
20.(本題9分)(1)3’(2)3’略 (3) 3’
21.(本題10分)
(3) 5’證明:∵CD//AB ∴∠ACD=∠BAC
∵∠ACD與∠ABD是弧AD所對的圓周角
∴∠ACD=∠ABD
∴∠BAC=∠ABD ∴AM=BM
(4) 5’設(shè)AD=x,∴AC=2x
由(1)可知∠BAC=∠ABD ∴弧BC=弧AD
∴弧AC=弧BD
∴AC=BD=2X
∵AB是⊙O直徑 ∴∠ADB=900
∴AD2+BD2=AB2
∴x2+(2x)2=82
∵ x>0 ∴
22.(本題10分)
(1) 2’解:由(-1,0)(4,0)得y=a(x+1)(x-4)
∵a= ∴y=(x+1)(x-4)=x2-x-2
∴ 第22題圖
(2) 6’①把C(m,1-m)代入
∴m1=-2 m2=3
∵C在第四象限,∴m=3 ∴c(3,-2) 2’
∵BC//DE DF//AC ∴四邊形DECF是平行四邊形 2’
∵AB2=25 AC2=20 BC2=5
∴AB2=AC2+BC2 ∴∠ACB=900 ∴□BECF是矩形 2’
②2’ 2
23、 (本題12分)
(1)4’直接寫出y關(guān)于x的函數(shù)關(guān)系式:y=-10x+1000
(2)4’解:S=(x-40)(-10x+1000)
=-10(x-70)2+9000 2’
∴當(dāng)50≤X≤70時,S隨X的增大而增大。2’
(3)4’解:40(-10X+1000)≤ 10000
∴X≥75 2’
∴當(dāng)X≥75時 S隨X的增大而減小 1’
∴當(dāng)X=75時 Smax=8750(元)1’
24. 4’(1)
(2)6’
?4’ (一邊寫對一個給2分)
鏈接地址:http://m.appdesigncorp.com/p-11758978.html