臺(tái)階軸機(jī)械加工工藝設(shè)計(jì)【說(shuō)明書(shū)+CAD】
購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
附表1 機(jī)械加工工藝過(guò)程卡片 常州機(jī)電職業(yè)技術(shù)學(xué)院 機(jī)械加工工藝過(guò)程卡片 產(chǎn)品型號(hào) JD03G—01--01 零件圖號(hào) 產(chǎn)品名稱(chēng) 臺(tái)階軸 零件名稱(chēng) 材料牌號(hào) 毛坯種類(lèi) 毛坯外形尺寸 備注 工序號(hào) 工序名稱(chēng) 工序內(nèi)容 車(chē)間 工段 設(shè)備 工藝裝備 工時(shí) 10 下料 鍛件45鋼,尺寸φ35X250 熱處理 T256,發(fā)藍(lán) 20 車(chē) 粗車(chē)左端面,光出外圓φ33X60±0.5mm 掉頭車(chē)右端面,保證尺寸248,鉆中心孔 頂住中心孔,粗車(chē)外圓φ26X166±0.5mm 粗車(chē)外圓φ23X115±0.5mm 粗車(chē)外圓φ21X29±0.5mm 半精車(chē)外圓保證尺寸φ25.5±0.1X166±0.5mm 半精車(chē)外圓保證尺寸φ22.5±0.1X88±0.5mm 半精車(chē)外圓保證尺寸φ20.5±0.1X29±0.5mm 精車(chē)外圓保證尺寸φ25.25,X166±0.5mm,倒角 精車(chē)外圓保證尺寸φ22.25X89mm 精車(chē)外圓保證尺寸φ20.25X30mm,倒角 切槽2X0.5 切槽φ21X6.5 掉頭精車(chē)右端面保證尺寸246,鉆中心孔 編制 審核 批準(zhǔn) 共 頁(yè) 第 頁(yè) 附表1 機(jī)械加工工藝過(guò)程卡片 常州機(jī)電職業(yè)技術(shù)學(xué)院 機(jī)械加工工藝過(guò)程卡片 產(chǎn)品型號(hào) 零件圖號(hào) 產(chǎn)品名稱(chēng) 零件名稱(chēng) 材料牌號(hào) 毛坯種類(lèi) 毛坯外形尺寸 備注 工序號(hào) 工序名稱(chēng) 工序內(nèi)容 車(chē)間 工段 設(shè)備 工藝裝備 工時(shí) 主軸反轉(zhuǎn)半精車(chē)外圓φ32.5mm 半精車(chē)外圓φ26.5mm 精車(chē)外圓保證尺寸φ32.25X5mm,倒角 精車(chē)外圓保證尺寸φ26.25X72.5mm 切槽2X0.5 切槽φ23X9.5,倒角 30 磨 雙頂尖,磨外圓φ26X72.5mm 磨外圓φ25X40mm 磨外圓φ22X82.5mm 磨外圓φ20X28mm 40 銑 銑鍵槽8X20,保證尺寸 50 鉆 鉆φ6K7 編制 審核 批準(zhǔn) 共 頁(yè) 第 頁(yè) 附表1 機(jī)械加工工藝過(guò)程卡片 常州機(jī)電職業(yè)技術(shù)學(xué)院 機(jī)械加工工藝過(guò)程卡片 產(chǎn)品型號(hào) 零件圖號(hào) 產(chǎn)品名稱(chēng) 零件名稱(chēng) 材料牌號(hào) 毛坯種類(lèi) 毛坯外形尺寸 備注 工序號(hào) 工序名稱(chēng) 工序內(nèi)容 車(chē)間 工段 設(shè)備 工藝裝備 工時(shí) 60 校驗(yàn) 檢驗(yàn),防銹處理 編制 審核 批準(zhǔn) 共 頁(yè) 第 頁(yè) 附表1 機(jī)械加工工藝過(guò)程卡片 常州機(jī)電職業(yè)技術(shù)學(xué)院 機(jī)械加工工藝過(guò)程卡片 產(chǎn)品型號(hào) 零件圖號(hào) 產(chǎn)品名稱(chēng) 零件名稱(chēng) 軸套 材料牌號(hào) 毛坯種類(lèi) 毛坯外形尺寸 備注 工序號(hào) 工序名稱(chēng) 工序內(nèi)容 車(chē)間 工段 設(shè)備 工藝裝備 工時(shí) 10 下料 鍛件45鋼,尺寸φ35X100 20 熱處理 T256,發(fā)藍(lán) 30 車(chē) 車(chē)右端面 粗車(chē)外圓φ31±0.5X35±0.5 半精車(chē)外圓φ30.3±0.1X35±0.5 精車(chē)外圓φ30X35±0.5保證光潔度1.6 切斷尺寸31±0.5 夾已車(chē)外圓精車(chē)左端面,保證尺寸30和垂直度 鉆孔φ18 粗鏜內(nèi)孔至φ19±0.1 半精鏜內(nèi)孔至φ19.8±0.1 精鏜內(nèi)孔至φ20H8,保證光潔度1.6 40 鉆 用鉆模板找位鉆孔φ6K7,保證尺寸和光潔度 編制 審核 批準(zhǔn) 共 頁(yè) 第 頁(yè) 附表1 機(jī)械加工工藝過(guò)程卡片 常州機(jī)電職業(yè)技術(shù)學(xué)院 機(jī)械加工工藝過(guò)程卡片 產(chǎn)品型號(hào) 零件圖號(hào) 產(chǎn)品名稱(chēng) 零件名稱(chēng) 材料牌號(hào) 毛坯種類(lèi) 毛坯外形尺寸 備注 工序號(hào) 工序名稱(chēng) 工序內(nèi)容 車(chē)間 工段 設(shè)備 工藝裝備 工時(shí) 50 校驗(yàn) 檢驗(yàn),防銹處理 編制 審核 批準(zhǔn) 共 頁(yè) 第 頁(yè) Smart Machining Systems Program Manager: M. Alkan Donmez Phone number: 301-975-6618 Email: alkan.donmez@nist.gov Program Funding: $2.8 M FTEs: 9 Program Goal Develop metrology methods and standards that enable U.S. industry to characterize, monitor, and improve the accuracy, reliability and productivity of machining operations, leading to the realization of autonomous smart machining systems. Problem Coalition on Manufacturing Technology Infrastructure (CTMI) identified an urgent need for “enabling dramatic improvements in the productivity and cost of designing,planning, producing, and delivering high-quality products within short cycle times.” CTMI identified thrust areas in process defi-nition and design, smart equipment/process control, fundamental understanding of process and equip-ment, health monitoring/assurance and integration framework. It also stated that metrology and standards are key enablers of these thrust areas. This program aims to facilitate the development and validation of such measurement methods and stan-dards. A successful program will enable the smart machining systems to cost effective manufacture the first and every part to specification and on schedule. Approach The program focuses on developing a methodology for seamlessly integrating all science-based under-standing or representation of material removal processes and machining system performance to carry out dynamic and global optimization. There are three programmatic focus areas: (1) performance characterization and representation; (2) process opti-mization and control; and (3) condition monitoring. Modern metrology instruments allow development of new machine tool performance characterization techniques. Goal Develop, validate, and demonstrate the metrology, standards, and infrastructural tools that enable U.S. industry to characterize, monitor, and improve the accuracy, reliability and productivity of machiningoperations, leading to the realization of autonomous smart machining systems. Customer Need & Intended Impact Machining systems are used for discrete part and tooling fabrication and hence are integral to the manufacture of durable goods. Annual U.S. expenses on machining operations total more than $200 billion, about 2% of Gross Domestic Product (GDP). A study conducted by the Association for Manufacturing Technology (AMT) in 2000 indicated that the advancements in machine tools and related manufacturing technologies created benefits worth a total of nearly $1 trillion in the U.S. over the period 1994-1999. These benefits resulted from gains in productivity, declines in inventory requirements, and manufacturing related product improvements for price, quality and energy efficiency. Over the last two years there has been an intensive effort originated by three NIST/MEL programs, Smart Machine Tools, Predictive Process Engineering and Intelligent Open Architecture Control that have evolved toward a common theme of Smart Machining. These MEL efforts joined with the National Science Foundation (NSF) and Integrated Manufacturing Technology Initiative (IMTI) to organize and conduct a Smart Machine Tool Workshop in December 2002 bringing government, industry and academia together to identify the U.S. needs in technology development in the area of smart machine tools and machining systems. As a result of this workshop, U.S. manufacturing industry represented by Association for Manufacturing Technology (AMT), National Center for Defense Manufacturing and Machining (NCDMM), National Center for Manufacturing Sciences (NCMS), National Coalition for Advanced Manufacturing (NACFAM), National Tooling & Machining Association (NTMA), Society of Manufacturing Engineers (SME), and TechSolve, established the Coalition on Manufacturing Technology Infrastructure (CMTI) in 2003. This coalition produced a technology roadmap for the Smart Machine Platform Initiative (SMPI) in March 2004. The original three MEL programs strongly influenced the structure and content of the SMPI technology roadmap. The Smart Machining Systems (SMS) program continues this evolution and is closely aligned with the SMPI technology plan. CMTI indicates in its 2004 Technology Plan that productivity and quality gains achieved by the U.S. manufacturing industry over the last decade are challenged by low-wage countries. As a result, outsourcing of manufacturing in economically critical industries such as automotive, aerospace, consumer products, and heavy equipment is increasing. On the other hand, advanced technologies and engineering innovations are bred in advanced manufacturing environments facilitated by significant amount of interactions. Losing these manufacturing environments, the U.S. is in danger of losing its edge in advanced technology and innovations as well. CMTI identified an urgent need to reverse this trend by “reinvention of the basic manufacturing environment, enabling dramatic improvements in the productivity and cost of designing, planning, producing, and delivering high-quality products within short cycle times.” CMTI further identified five primary thrust areas to address the challenges facing the U.S. manufacturing sector that produces metal parts and fabrications: a. Process definition and design b. Smart equipment operation and process control c Fundamental process and equipment understanding d. Health monitoring and assurance e. Integration framework Metrology and standards are identified as key enablers of these thrust areas. The Smart Machining Systems (SMS) program aims to facilitate the development and validation of such measurement and related technologies and standards. A successful program will enable cost effective manufacture of first and every part to specification and on schedule by the smart machining systems. Such systems will complement and enhance the skills of machine operators, process planners and design engineers in the manufacturing enterprise by sharing the knowledge and information among these functions to optimize the design and manufacturing processes to their fullest. Loaded with high fidelity process and performance models and optimization tools, smart machining systems will behave in a predictable and controllable manner. This will eliminate trial-and-error based prototype development and reduce time to market, and thus advance the capability of U.S. industry to respond to the global pressures of mass customization of high quality products. An advanced manufacturing environment is conducive to engineering innovations. Reversing the trend of outsourcing to low-wage countries will enable U.S. industry to regain its competitive edge in innovations and productivity. This competitive advantage will minimize the adverse effects of trade imbalances on the U.S. economy. Technical Approach & Program Objectives To enable cost effective manufacture of first and every part to specification and on schedule, a smart machining system will have the following characteristics: . It will know its capabilities/condition and will communicate this information . It will monitor and optimize its operations autonomously . It will assess the quality of its work/output . It will learn and improve itself over time These characteristics require a science-based understanding and unambiguous representation of material removal processes and machining system performance. There are three programmatic focus areas: (1) performance characterization and representation; (2) process optimization and control; and (3) condition monitoring. Development of dynamic and global optimization tools and methodology that will integrate the physical understanding of all system components will be the unifying theme of all these focus areas. To meet program goals and objectives as well as communicate the applications of developed concepts and tools to stake holders, the program will focus on three types of projects: development of fundamental methods and data; development of demonstration platforms; and high-risk projects with potential paradigm changing outcomes. Demonstration platforms will also serve to promote stronger collaboration with equipment/software vendors leading to better outreach. Objective #1: Dynamic optimization Develop a generic methodology and associated data and dynamic process optimization, based on design requirements, integrating all related process and equipment knowledge and information. As stated in SMPI Technology Plan, the ability to account for and accurately predict or describe the propagation of errors in a machining platform is vital for estimating and emulating real-world performance, but represents a major gap in the current technology. Although significant information related to performance of machine tools, machining processes, cutting tools, and materials already exist, there is no unified methodology to combine all this information to generate optimum machining conditions with expected outcomes. Furthermore, very little of this information is standardized, making the optimization even more difficult to generalize. Accomplishing this objective will enable science-based process design and quality control, which are key requirements for smart machining systems. A generic optimization capability based on well-defined cause and effect relationships will also be an enabler for reasoning and learning capability of smart machining systems. Objective # 2: Equipment characterization Develop measurement methods, models and standards to characterize and communicate the machine tool performance under operating conditions. Information about machine tool performance forms one of the primary foundations necessary to enable manufacturing the first and every part to specifications. Traditionally machine tool performance is determined using a series of tests conducted under quasi-static conditions. There are series of national and international standards describing these tests. These performance parameters are used to buy and sell machines as well as to predict the capability of machine tools for specific family of parts. The differences between the national and international standards cause the vendors and the users of the machines tools great difficulty and confusion about the claimed performance parameters for contractual and capability estimation purposes. Harmonization among these standards is considered a first priority for this objective. Furthermore, the relationships between the quasi-static performance parameters and obtainable part tolerances are not very well defined because under operating conditions the performance of the machine is not the same as for the quasi-static conditions. The AMT roadmap targets an 80% improvement in accuracy of machine tool between 1995 and 2010. Machine tool vendors and users have already exhausted their options to improve the performance based on quasi-static machine behavior. Measuring and modeling of performance under operating conditions are the main enablers left to improve machine performance. Objective #3: Next generation NC Develop, implement and demonstrate all necessary STEP-NC compliant interfaces and data specifications for seamless operation of model-based machine control. Smart machining systems need a rich set of information to fully exploit their capabilities. Current Numerical Control (NC) programs are written in “G codes” which express primitive tool paths. These programs do not include information about as-is or to-be geometry, features, tolerances, material properties, fixture location, material removal rates or other information developed during the design and process planning stages. This information is stripped out when converting to G codes, severely limiting the ability of the controller to optimize machining or react to disturbances. Fine tuning processes to maximize performance with current methods is very expensive, tedious and time consuming, and cost effective only for very large part lots. Mass customization and penetration to small manufacturers remain elusive. STEP-NC, an international standard - ISO 14649 “Data model for computerized Numerical Controllers,” is the enabling standard that provides the potential for using the digital product model as machine tool input. STEP-NC extends STEP (ISO 10303) – the Standard for the Exchange of Product model data into the NC world. 9 精密機(jī)器制造系統(tǒng) 程序經(jīng)理:M.Alkan Donmez 電話(huà)號(hào)碼:301-975-6618 電子郵件:alkan.donmez@nist.gov 課題資助:$2.8M PTE:9 課題目標(biāo) 開(kāi)發(fā)使美國(guó)產(chǎn)業(yè)描繪、監(jiān)測(cè)和改進(jìn)機(jī)器操作準(zhǔn)確性、可靠性和生產(chǎn)力的計(jì)量學(xué)方法和標(biāo)準(zhǔn),引導(dǎo)對(duì)自治精密機(jī)器制造的系統(tǒng)的認(rèn)識(shí)。 問(wèn)題 制造業(yè)技術(shù)基礎(chǔ)設(shè)施(CTMI)確定了使在短的循環(huán)周期內(nèi),生產(chǎn)力、設(shè)計(jì)、計(jì)劃、生產(chǎn)成本、提供高質(zhì)量產(chǎn)品成為可能是一個(gè)迫在需求。CTMI確定了在流程定義和設(shè)計(jì),精密設(shè)備,過(guò)程控制,對(duì)過(guò)程和設(shè)備,健康監(jiān)督、擔(dān)保和綜合框架的根本理解的延伸區(qū)域。它也闡明了計(jì)量學(xué)和標(biāo)準(zhǔn)是這些延伸區(qū)域關(guān)鍵的使能者。這個(gè)課題的目的是促進(jìn)這些測(cè)量方法的發(fā)展和有效。一個(gè)成功的課題首先將使精密機(jī)器制造系統(tǒng)有效的制造,和每個(gè)部分在日程表的詳述。 方法 課題集中于開(kāi)發(fā)集成物質(zhì)撤除過(guò)程的所有基于科學(xué)的理解或表示法和無(wú)縫用機(jī)器制造系統(tǒng)性能的方法學(xué)的執(zhí)行動(dòng)態(tài)和全球性?xún)?yōu)化。有三個(gè)綱領(lǐng)性焦點(diǎn)區(qū)域:1.表現(xiàn)描述特性和表示法:2.處理優(yōu)化和控制:3.條件監(jiān)測(cè) 現(xiàn)代計(jì)量學(xué)一起允許新機(jī)械工具表現(xiàn)描述特性技術(shù)的發(fā)展。 精密機(jī)器制造系統(tǒng) 目標(biāo) 發(fā)展、確認(rèn)和展示使美國(guó)產(chǎn)業(yè)描繪、監(jiān)測(cè)和改進(jìn)機(jī)器操作準(zhǔn)確性、可靠性和生產(chǎn)力的計(jì)量學(xué)、標(biāo)準(zhǔn)和基礎(chǔ)建設(shè)的工具,引導(dǎo)自治精密機(jī)器制造的系統(tǒng)的認(rèn)識(shí)。 用戶(hù)需求&意欲的沖擊 機(jī)器制造系統(tǒng)用于分離部分工具加工的制造,因此耐用品是缺一不可的。每年美國(guó),花費(fèi)在機(jī)器操作上共計(jì)超過(guò)2000億美圓,大約2%國(guó)民生產(chǎn)總值。在2000年,由制造技術(shù)協(xié)會(huì)進(jìn)行的研究表明機(jī)械工具和相關(guān)制造技術(shù)的改進(jìn)在1994-1999年期間創(chuàng)造的價(jià)值總共接近1兆美圓。這些好處起因于生產(chǎn)力的獲取,存貨要求的下降和制造業(yè)相關(guān)產(chǎn)品改善的價(jià)格、質(zhì)量和節(jié)能。 在過(guò)去二年間,有一個(gè)大成果,起源于三個(gè)NIST/MEL課題,巧妙的機(jī)械工具,有預(yù)測(cè)性的程序工程和智能的開(kāi)放式體系結(jié)構(gòu)控制。這些MEL成就了國(guó)家基金會(huì)(美國(guó)國(guó)家科學(xué)基金會(huì))和集成制造技術(shù)創(chuàng)辦協(xié)會(huì)(IMTI)在2002年12月一起舉行一次精密機(jī)械工具研討會(huì)帶來(lái)政府、產(chǎn)業(yè)和學(xué)術(shù)界一起辨認(rèn)美國(guó)在精密機(jī)械工具和機(jī)器制造系統(tǒng)區(qū)域技術(shù)發(fā)展的需要。由于這個(gè)車(chē)間,美國(guó)制造工業(yè)由制造業(yè)技術(shù)協(xié)會(huì),全國(guó)防御制造業(yè)和機(jī)器制造中心,全國(guó)制造科學(xué),全國(guó)先進(jìn)制造聯(lián)盟,全國(guó)加工與機(jī)器制造聯(lián)盟,制造工程師協(xié)會(huì)和技術(shù)解決協(xié)會(huì)代表的美國(guó)工業(yè),在2003年建立了機(jī)械制造技術(shù)基本設(shè)施聯(lián)盟。在2004年3月,這個(gè)聯(lián)盟為精密機(jī)器平臺(tái)主動(dòng)性提供了技術(shù)路線(xiàn)圖。原始的三個(gè)MEI課題強(qiáng)烈影響了精密機(jī)器制造平臺(tái)主動(dòng)性技術(shù)路線(xiàn)圖的結(jié)構(gòu)和內(nèi)容。精密機(jī)器制造系統(tǒng)保持著這個(gè)演變并且與精密機(jī)器制造平臺(tái)主動(dòng)性技術(shù)計(jì)劃緊密地排列著。 在它的2004年技術(shù)計(jì)劃中CMTI表明,過(guò)去的十年由美國(guó)制造工業(yè)達(dá)到生產(chǎn)力和質(zhì)量的增長(zhǎng)被底薪水國(guó)家挑戰(zhàn)。結(jié)果,采購(gòu)制造在經(jīng)濟(jì)上重要產(chǎn)業(yè),譬如汽車(chē)、航空航天、消費(fèi)品和重的設(shè)備增長(zhǎng)著。另一方面,先進(jìn)技術(shù)和工程創(chuàng)新在由重大相當(dāng)數(shù)量相互作用促進(jìn)的先進(jìn)制造環(huán)境里助長(zhǎng)著。丟失這些制造環(huán)境,美國(guó)就會(huì)丟失它在先進(jìn)技術(shù)和創(chuàng)新邊緣的危險(xiǎn)。 CMTI辨認(rèn)了緊急需要扭轉(zhuǎn)這個(gè)趨向由“基本的制造環(huán)境的再改造”,使生產(chǎn)力,設(shè)計(jì),計(jì)劃,生產(chǎn)成本和在短期內(nèi)交付優(yōu)質(zhì)產(chǎn)品得到較大改善,CMTI進(jìn)一步辨認(rèn)了五個(gè)主要推力區(qū)域演講面對(duì)生產(chǎn)金屬零件和制造的美國(guó)制造業(yè)的挑戰(zhàn)。 一個(gè)成功的課題將通過(guò)SMS成本有效,首先制造第一和規(guī)定和日程表中的沒(méi)一部分由精密機(jī)器制造的系統(tǒng),這樣的系統(tǒng)補(bǔ)全和提高在制造業(yè)企業(yè)中的機(jī)器操作員,流程計(jì)劃者和設(shè)計(jì)工程師技能,通過(guò)由分享知識(shí)和信息在這些作用之中優(yōu)選設(shè)計(jì)和制造過(guò)程達(dá)到最高水平。 通過(guò)高精度過(guò)程和程序模型和優(yōu)化工具裝載,精密機(jī)器制造系統(tǒng)將以可預(yù)測(cè)和可控制的方式表現(xiàn)出來(lái)。這將消滅基于原型發(fā)展的實(shí)驗(yàn)和錯(cuò)誤,也將減少上市時(shí)間,因而推進(jìn)美國(guó)產(chǎn)業(yè)的能力反應(yīng)于高質(zhì)量產(chǎn)品的許多定制全球性壓力。 一個(gè)先進(jìn)的制造環(huán)境有助于工程學(xué)創(chuàng)新。扭轉(zhuǎn)采購(gòu)低薪水國(guó)家趨向,將使美國(guó)產(chǎn)業(yè)收復(fù)它在創(chuàng)新和生產(chǎn)力上的競(jìng)爭(zhēng)力。這競(jìng)爭(zhēng)優(yōu)勢(shì)使貿(mào)易逆差減到對(duì)美國(guó)經(jīng)濟(jì)最小的不利影響。 技術(shù)方法&課題宗旨 為了首先使制造成本有效和每個(gè)部分都按照規(guī)格和日程表運(yùn)行,一個(gè)精密機(jī)器制造將有如下特征: .它將知道自己的能力,環(huán)境,并傳達(dá)這些信息 .它將自動(dòng)監(jiān)測(cè)和選擇操作 .它將估計(jì)它的工作和產(chǎn)品的質(zhì)量 .它將隨時(shí)間慢慢地學(xué)會(huì)并且改進(jìn)自己 這些特征要求一種基于對(duì)物質(zhì)撤除過(guò)程和機(jī)器制造系統(tǒng)的理解和毫不含糊的標(biāo)識(shí)法的科學(xué)。 有三個(gè)綱領(lǐng)性焦點(diǎn)區(qū)域: ⑴表現(xiàn)描述特征和表示法; ⑵處理優(yōu)化和控制; ⑶條件監(jiān)測(cè)。 這些對(duì)所有系統(tǒng)組分的物理理解集成的動(dòng)態(tài)的發(fā)展和全球性?xún)?yōu)化工具和方法學(xué)的發(fā)展,將是所有這些焦點(diǎn)區(qū)域的統(tǒng)一題材。 為了符合課題目標(biāo)和宗旨,還有向股東交流開(kāi)發(fā)概念和工具的應(yīng)用,課題將著重于三個(gè)類(lèi)型的項(xiàng)目:根本方法和數(shù)據(jù)的發(fā)展;示范平臺(tái)的發(fā)展和潛在的結(jié)果變化的范例的高風(fēng)險(xiǎn)項(xiàng)目。示范平臺(tái)同樣也將服務(wù)于促進(jìn)于設(shè)備/軟件賣(mài)主更強(qiáng)的合作,以致于更好的勝出。 宗旨#1:動(dòng)態(tài)的最優(yōu)化 開(kāi)發(fā)一個(gè)基于設(shè)計(jì)要求、集成所有相關(guān)過(guò)程和設(shè)備知識(shí)、信息的普通方法論和關(guān)聯(lián)的數(shù)據(jù),模型說(shuō)明書(shū),完成動(dòng)態(tài)過(guò)程的最優(yōu)化。 依照在SMPI技術(shù)計(jì)劃中的陳述,在一個(gè)用機(jī)器制造的平臺(tái)上,解決、正確地預(yù)測(cè)或描述錯(cuò)誤的普及對(duì)評(píng)估和超越真實(shí)世界但在當(dāng)前技術(shù)代表了一個(gè)主要的空白的能力是至關(guān)重要的。雖然與機(jī)床,機(jī)器制造過(guò)程,切割工具和材料相關(guān)的重大的信息已經(jīng)存在,但是卻還有一個(gè)統(tǒng)一的方法學(xué)去結(jié)合所有這些信息去產(chǎn)生期望的最好條件。此外,這些信息中很少是被規(guī)范化的,這使得最優(yōu)化甚至更加難以推斷。 實(shí)現(xiàn)這個(gè)宗旨將使基于科學(xué)的過(guò)程設(shè)計(jì)和質(zhì)量控制成為可能,這些都是精密機(jī)器制造系統(tǒng)的關(guān)鍵要求。一個(gè)基于明確定義的起因和作用關(guān)系的普通優(yōu)化能力也將會(huì)成為推理和學(xué)習(xí)精密機(jī)器制造系統(tǒng)能力的使能者。 宗旨#2:設(shè)備描述特性 開(kāi)發(fā)測(cè)量方法、模型和標(biāo)準(zhǔn)去描繪和傳達(dá)在操作條件下的機(jī)床性能。 關(guān)于機(jī)床性能的信息形成主要基礎(chǔ)中的一個(gè)必要使得制造第一和每部分符合規(guī)格。傳統(tǒng)上,機(jī)床性能在類(lèi)似靜態(tài)環(huán)境下使用一系列測(cè)試后確定下來(lái)的。有一系列全國(guó)和國(guó)際標(biāo)準(zhǔn)描述這些測(cè)試。這些性能參數(shù)被使用在購(gòu)買(mǎi)和出售機(jī)器上,也預(yù)測(cè)由于特殊零件家族的機(jī)床性能。全國(guó)和國(guó)際標(biāo)準(zhǔn)的不同引起機(jī)床賣(mài)主和買(mǎi)主的難處和困惑,是關(guān)于被要求的性能參數(shù)為契約和能力估計(jì)的目的。這些標(biāo)準(zhǔn)之間的和諧是這個(gè)宗旨優(yōu)先考慮的事。此外,類(lèi)似靜態(tài)條件下的性能參數(shù)與可獲得的零件包含參數(shù)之間的關(guān)系不能很好的被定義,因?yàn)樵诓僮鳝h(huán)境下,機(jī)器的性能不和在類(lèi)似靜態(tài)環(huán)境下的一樣。AMT路線(xiàn)圖描述了在1995年到2010年之間機(jī)床準(zhǔn)確性的改善。機(jī)床賣(mài)主和買(mǎi)主已經(jīng)耗盡他們的選擇去改進(jìn)基于類(lèi)似條件下機(jī)床運(yùn)動(dòng)性能的改進(jìn)。在操作條件下性能測(cè)量和塑造是留下的主要改進(jìn)機(jī)器性能的使能者。 宗旨#3:下一代數(shù)字控制 開(kāi)發(fā)、實(shí)施和展示所有必要的步進(jìn)數(shù)字控制服從的接口和數(shù)據(jù)規(guī)格,是為了基于模型的機(jī)器控制的無(wú)縫操作。 精密機(jī)器制造系統(tǒng)需要一套豐富的信息來(lái)充分利用它們的能力。當(dāng)前的數(shù)字控制程序用G代碼輸寫(xiě),它表現(xiàn)原始的刀具運(yùn)動(dòng)軌跡。這些程序不包括現(xiàn)在或?qū)?lái)的幾何、性能、公差、物質(zhì)物產(chǎn)、裝置地點(diǎn)、物質(zhì)撤除率或在設(shè)計(jì)和過(guò)程計(jì)劃階段被開(kāi)發(fā)出來(lái)的信息。當(dāng)轉(zhuǎn)化為G代碼時(shí),這些信息就被撤除,嚴(yán)格限制控制器的能力去優(yōu)化機(jī)器或?qū)Ω蓴_起反應(yīng)。性能最大優(yōu)化過(guò)程,用當(dāng)前的方法是非常昂貴、繁瑣和費(fèi)時(shí)的,并且僅僅使大的零件有效。許多定制和滲透對(duì)小制造商仍然是難以捉摸的。步進(jìn)數(shù)字控制,國(guó)際標(biāo)準(zhǔn)-ISO14649,計(jì)算機(jī)數(shù)字控制數(shù)據(jù)模型是提供使用數(shù)字產(chǎn)品模型作為機(jī)床輸入的使能標(biāo)準(zhǔn)。步進(jìn)數(shù)字控制擴(kuò)大可步伐(ISO10303)-在數(shù)字控制世界湊模型數(shù)據(jù)交換的標(biāo)準(zhǔn)。臺(tái)階軸機(jī)械加工工藝設(shè)計(jì)【說(shuō)明書(shū)CAD】.zip |
壓縮包目錄 | 預(yù)覽區(qū) |
|
請(qǐng)點(diǎn)擊導(dǎo)航文件預(yù)覽
|
積分
- 關(guān) 鍵 詞:
- 說(shuō)明書(shū)+CAD 臺(tái)階 機(jī)械 加工 工藝 設(shè)計(jì) 說(shuō)明書(shū) 仿單 cad
- 資源描述:
-
購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
展開(kāi)閱讀全文
鏈接地址:http://m.appdesigncorp.com/p-11557078.html