空間幾何體的表面積與體積練習(xí)題.及答案
《空間幾何體的表面積與體積練習(xí)題.及答案》由會員分享,可在線閱讀,更多相關(guān)《空間幾何體的表面積與體積練習(xí)題.及答案(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
空間幾何體的表面積與體積專題一、選擇題1棱長為2的正四面體的表面積是(C)A. B4 C4 D16解析每個面的面積為:22.正四面體的表面積為:4.2把球的表面積擴大到原來的2倍,那么體積擴大到原來的 (B)A2倍 B2倍 C.倍 D.倍解析由題意知球的半徑擴大到原來的倍,則體積VR3,知體積擴大到原來的2倍3如圖是一個長方體截去一個角后所得多面體的三視圖,則該多面體的體積為(B)A. B. C. D.解析根據(jù)三視圖的知識及特點,可畫出多面體的形狀,如圖所示這個多面體是由長方體截去一個正三棱錐而得到的,所以所求多面體的體積VV長方體V正三棱錐4462.4某幾何體的三視圖如下,則它的體積是(A)A8 B8 C82 D.解析 由三視圖可知該幾何體是一個邊長為2的正方體內(nèi)部挖去一個底面半徑為1,高為2的圓錐,所以V2328.5已知某幾何體的三視圖如圖,其中正視圖中半圓的半徑為1,則該幾何體的體積為(A)A24 B24 C24 D24據(jù)三視圖可得幾何體為一長方體內(nèi)挖去一個半圓柱,其中長方體的棱長分別為:2,3,4,半圓柱的底面半徑為1,母線長為3,故其體積V23412324.6某品牌香水瓶的三視圖如圖 (單位:cm),則該幾何體的表面積為(C)A. cm2 B. cm2C. cm2 D. cm2解析 這個空間幾何體上面是一個四棱柱、中間部分是一個圓柱、下面是一個四棱柱上面四棱柱的表面積為23312130;中間部分的表面積為21,下面部分的表面積為24416264.故其表面積是94.7已知球的直徑SC4,A,B是該球球面上的兩點,AB,ASCBSC30,則棱錐S-ABC的體積為(C)A3 B2 C. D1解析由題可知AB一定在與直徑SC垂直的小圓面上,作過AB的小圓交直徑SC于D,設(shè)SDx,則DC4x,此時所求棱錐即分割成兩個棱錐S-ABD和C-ABD,在SAD和SBD中,由已知條件可得ADBDx,又因為SC為直徑,所以SBCSAC90,所以DCBDCA60,在BDC中 ,BD(4x),所以x(4x),所以x3,ADBD,所以三角形ABD為正三角形,所以VSABD4.二、填空題8三棱錐PABC中,PA底面ABC,PA3,底面ABC是邊長為2的正三角形,則三棱錐PABC的體積等于_解析依題意有,三棱錐PABC的體積VSABC|PA|223.9一個圓柱的軸截面是正方形,其側(cè)面積與一個球的表面積相等,那么這個圓柱的體積與這個球的體積之比為_ 32_解析 設(shè)圓柱的底面半徑是r,則該圓柱的母線長是2r,圓柱的側(cè)面積是2r2r4r2,設(shè)球的半徑是R,則球的表面積是4R2,根據(jù)已知4R24r2,所以Rr.所以圓柱的體積是r22r2r3,球的體積是r3,所以圓柱的體積和球的體積的比是32.10如圖所示,已知一個多面體的平面展開圖由一個邊長為1的正方形和4個邊長為1的正三角形組成,則該多面體的體積是_解析由題知該多面體為正四棱錐,底面邊長為1,側(cè)棱長為1,斜高為,連接頂點和底面中心即為高,可求得高為,所以體積V11.11如圖,半徑為R的球O中有一內(nèi)接圓柱當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是_2R2_解析由球的半徑為R,可知球的表面積為4R2.設(shè)內(nèi)接圓柱底面半徑為r,高為2h,則h2r2R2.而圓柱的側(cè)面積為2r2h4rh42R2(當(dāng)且僅當(dāng)rh時等號成立),即內(nèi)接圓柱的側(cè)面積最大值為2R2,此時球的表面積與內(nèi)接圓柱的側(cè)面積之差為2R2.12如圖,已知正三棱柱ABCA1B1C1的底面邊長為2 cm,高為5 cm,則一質(zhì)點自點A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)點A1的最短路線的長為_13_cm.解析根據(jù)題意,利用分割法將原三棱柱分割為兩個相同的三棱柱,然后將其展開為如圖所示的實線部分,則可知所求最短路線的長為13 (cm)三、解答題13某高速公路收費站入口處的安全標(biāo)識墩如圖1所示,墩的上半部分是正四棱錐PEFGH,下半部分是長方體ABCDEFGH.圖2、圖3分別是該標(biāo)識墩的正視圖和俯視圖(1)請畫出該安全標(biāo)識墩的側(cè)視圖;(2)求該安全標(biāo)識墩的體積解析(1)側(cè)視圖同正視圖,如圖所示:(2)該安全標(biāo)識墩的體積為VVPEFGHVABCDEFGH402604022064 000(cm3)14 .一個幾何體的三視圖如圖所示已知正視圖是底邊長為1的平行四邊形,側(cè)視圖是一個長為,寬為1的矩形,俯視圖為兩個邊長為1的正方形拼成的矩形(1)求該幾何體的體積V;(2)求該幾何體的表面積S.解析 (1)由三視圖可知,該幾何體是一個平行六面體(如圖),其底面是邊長為1的正方形,高為,所以V11.(2)由三視圖可知,該平行六面體中,A1D平面ABCD,CD平面BCC1B1,所以AA12,側(cè)面ABB1A1,CDD1C1均為矩形,S2(11112)62.15已知某幾何體的俯視圖是如右圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8、高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為6、高為4的等腰三角形(1)求該幾何體的體積V;(2)求該幾何體的側(cè)面積S.解析由題設(shè)可知,幾何體是一個高為4的四棱錐,其底面是長、寬分別為8和6的矩形,正側(cè)面及其相對側(cè)面均為底邊長為8,高為h1的等腰三角形,左、右側(cè)面均為底邊長為6,高為h2的等腰三角形,如右圖所示(1)幾何體的體積為:VS矩形h68464.(2)正側(cè)面及相對側(cè)面底邊上的高為:h15.左、右側(cè)面的底邊上的高為:h24.故幾何體的側(cè)面面積為:S24024.1.一個圓柱的側(cè)面展開圖是一個正方形,這個圓柱的全面積與側(cè)面積的比是( ). .解:設(shè)展開圖的正方形邊長為a,圓柱的底面半徑為r,則2r=a,底面圓的面積是,于是全面積與側(cè)面積的比是,2在棱長為 1 的正方體上,分別用過共頂點的三條棱中點的平面截該正方體,則截去與8個頂點相關(guān)的8個三棱錐后 ,剩下的幾何體的體積是( ). 2解:正方體的體積為1,過共頂點的三條棱中點的平面截該正方體截得的三棱錐的體積是,于是8個三棱錐的體積是,剩余部分的體積是, 3一個直棱柱(側(cè)棱垂直于底面的棱柱)的底面是菱形,對角線長分別是6cm和8cm,高是5cm,則這個直棱柱的全面積是 。3答案:148 cm2解:底面菱形中,對角線長分別是6cm 和8cm,所以底面邊長是5cm,側(cè)面面積是455=100cm2,兩個底面面積是48cm2,所以棱柱的全面積是148cm2.4已知兩個母線長相等的圓錐的側(cè)面展開圖恰能拼成一個圓,且它們的側(cè)面積之比為1:2,則它們的高之比為 。4答案:2:解:設(shè)圓柱的母線長為l,因為兩個圓錐的側(cè)面展開圖恰能拼成一個圓,且它們的側(cè)面積之比為1:2,所以它們的展開圖即扇形的圓心角分別是和,由圓錐側(cè)面展開圖扇形的圓心角的計算公式,得,所以它們的高的比是.5已知三棱錐的三條側(cè)棱兩兩互相垂直,且長度分別為1cm,2cm,3cm,則此棱錐的體積_5答案:1cm3解:轉(zhuǎn)換一個角度來認(rèn)識這個三棱錐,即把它的兩條側(cè)棱(如長度為1cm,2cm的兩條)確定的側(cè)面看作底面,另一條側(cè)棱作為高,則此三棱錐的底面面積是1,高為3, 則它的體積是13=1cm3. 6矩形兩鄰邊的長為a、b,當(dāng)它分別繞邊a、b 旋轉(zhuǎn)一周時, 所形成的幾何體的體積之比為 6答案:解:矩形繞a邊旋轉(zhuǎn),所得幾何體的體積是V1=b2a,矩形繞b邊旋轉(zhuǎn),所得幾何體的體積是V2=a2b,所以兩個幾何體的體積的比是16四面體的六條棱中,有五條棱長都等于a.(1)求該四面體的體積的最大值;(2)當(dāng)四面體的體積最大時,求其表面積解析(1)如圖,在四面體ABCD中,設(shè)ABBCCDACBDa,ADx,取AD的中點為P,BC的中點為E,連接BP、EP、CP.得到AD平面BPC,VA-BCDVA-BPCVD-BPCSBPCAPSBPCPDSBPCADa xa3(當(dāng)且僅當(dāng)xa時取等號)該四面體的體積的最大值為a3.(2)由(1)知,ABC和BCD都是邊長為a的正三角形,ABD和ACD是全等的等腰三角形,其腰長為a,底邊長為a,S表2a22a a2aa2a2.5- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
15 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 空間 幾何體 表面積 體積 練習(xí)題
鏈接地址:http://m.appdesigncorp.com/p-10440024.html