某商用車雙速主減速器驅(qū)動橋設(shè)計
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
論文題目:某商用車雙速主減速器驅(qū)動橋設(shè)計 班級:1001202 學(xué)號:100120206 姓名:汪方良 所需參數(shù)參考解放CA141的相關(guān)參數(shù)進(jìn)度進(jìn)度安排安排第13周:搜集資料,撰寫開題報告;第47周:確定總體方案,進(jìn)行驅(qū)動橋設(shè)計計算;第813周:三維實(shí)體建模,繪制二維工程圖;第1415周:對驅(qū)動橋殼進(jìn)行有限元分析;第1617周:撰寫畢業(yè)設(shè)計論文;第18周:準(zhǔn)備答辯??傮w方案的確定與設(shè)計主減速器設(shè)計選用雙級主減速器(傳動比為7.63)具體結(jié)構(gòu)方案:第一級錐齒輪(傳動比為2.27),第二級圓柱齒輪(傳動比為3.36)??傮w方案的確定與設(shè)計差速器設(shè)計具體形式選擇對稱式圓錐行星齒輪差速器采用4個行星齒輪,齒數(shù)分別為10、18??傮w方案的確定與設(shè)計驅(qū)動半軸設(shè)計采用全浮式半軸。直徑取65mm,長度取995mm;半軸花鍵外徑為43mm,與之配合的花鍵孔內(nèi)徑為38.5mm,花鍵齒數(shù)為35。三維實(shí)體建模主減速器第一級主動齒輪三維實(shí)體建模主減速器第一級從動齒輪三維實(shí)體建模主減速器第二級主動齒輪三維實(shí)體建模主減速器第二級從動齒輪三維實(shí)體建模差速器左殼三維實(shí)體建模差速器左殼三維實(shí)體建模差速器右殼三維實(shí)體建模差速器齒輪三維實(shí)體建模差速器齒輪其他工作不定時的畢業(yè)論文準(zhǔn)備英文文獻(xiàn)的翻譯某商用車雙速主減速器驅(qū)動橋設(shè)計某商用車雙速主減速器驅(qū)動橋設(shè)計學(xué)號:學(xué)號:100120206姓名:汪方良姓名:汪方良導(dǎo)師:劉濤老師導(dǎo)師:劉濤老師院系:汽車工程學(xué)院院系:汽車工程學(xué)院報告時間:報告時間:2014.6.23汽車驅(qū)動橋簡介驅(qū)動橋主要有兩大作用:1、傳遞并分配轉(zhuǎn)矩,并具有合適的運(yùn)動學(xué)功能2、承受來自路面、車架或車廂的各種力汽車驅(qū)動橋簡介驅(qū)動橋的主要組成1、驅(qū)動橋殼2、主減速器3、差速器4、半軸畢業(yè)設(shè)計主要內(nèi)容1.對雙速主減速器驅(qū)動橋、制動器進(jìn)行設(shè)計計算2.建立驅(qū)動橋完整的三維實(shí)體模型,并繪制工程圖3.對驅(qū)動橋殼進(jìn)行有限元分析驅(qū)動橋設(shè)計主減速器設(shè)計1、主減速器的齒輪類型第一級圓錐齒輪第一級圓柱齒輪結(jié)構(gòu)形式2、主減速器的減速形式雙級主減速器3、錐齒輪支承方案懸臂式支撐驅(qū)動橋設(shè)計主減速器設(shè)計錐齒輪設(shè)計1、主減速器齒輪計算載荷的確定按發(fā)動機(jī)最大轉(zhuǎn)矩或驅(qū)動輪打滑轉(zhuǎn)矩確定2、錐齒輪主要參數(shù)選擇 包括齒數(shù)、模數(shù)、分度圓直徑、螺旋角、壓力角3、主減速器錐齒輪的幾何尺寸計算 根據(jù)公式計算各項(xiàng)參數(shù)4、主減速器錐齒輪的強(qiáng)度計算單位齒長圓周力、齒輪彎曲強(qiáng)度、齒輪接觸強(qiáng)度5、主減速器錐齒輪的載荷計算中點(diǎn)處的圓周力、軸向力、徑向力錐齒輪主要參數(shù)選擇主、從動錐齒輪齒數(shù)Z1和Z2 Z1=13、Z2=25從動錐齒輪大端分度圓直徑D2和端面模數(shù)ms初選D2=350.92mm、選取mt=7mm主、從動錐齒輪齒面寬b1、b2 b1取55mm、b2取50mm中點(diǎn)螺旋角通常取35法向壓力角 20錐齒輪主要參數(shù)選擇主、從動錐齒輪齒數(shù)Z1和Z2 Z1=13、Z2=25從動錐齒輪大端分度圓直徑D2和端面模數(shù)ms初選D2=350.92mm、選取mt=7mm主、從動錐齒輪齒面寬b1、b2 b1取55mm、b2取50mm中點(diǎn)螺旋角通常取35法向壓力角 20錐齒輪主要參數(shù)選擇主、從動錐齒輪齒數(shù)Z1和Z2 Z1=13、Z2=25從動錐齒輪大端分度圓直徑D2和端面模數(shù)ms初選D2=350.92mm、選取mt=7mm主、從動錐齒輪齒面寬b1、b2 b1取55mm、b2取50mm中點(diǎn)螺旋角通常取35法向壓力角 20項(xiàng)目計算公式計算結(jié)果主動齒輪齒數(shù)Z113從動齒輪齒數(shù)Z225端面模數(shù)m9mm齒面寬bb1=44mm,b2=40mm工作齒高h(yuǎn)g=2ha*mhg=14mm全齒高h(yuǎn)=(2ha*+c*)mh=16.99mm法向壓力角=20軸交角=90=90節(jié)圓直徑d=mZd1=99mm,d2=225mm節(jié)錐角1=27.47節(jié)錐角2=90-12=62.53節(jié)錐距取A0=126.8mm周節(jié)t=3.1416mt=21.99mm齒頂高h(yuǎn)a=10.26mm,5.4mm齒根高h(yuǎn)f=8.75mm徑向間隙c=c*mc=1.75mm齒根角f=3.09面錐角a1=1+f1a1=11.79面錐角a2=2+f2a2=84.39根錐角f1=1-f1f1=5.61根錐角f2=2-f2f2=78.21齒頂圓直徑da1=135.21mm齒頂圓直徑da2=229.5mm理論弧齒厚s1=t-s2,s2=Skms1=15.88mm,s2=6.10mm齒側(cè)間隙查表得0.18mm主減速器錐齒輪的幾何尺寸計算表主減速器錐齒輪的載荷計算圖中:FT為法向力Faz為軸向力FRz為徑向力驅(qū)動橋設(shè)計主減速器設(shè)計斜齒圓柱齒輪設(shè)計1、斜齒圓柱齒輪主要參數(shù)選擇 包括齒數(shù)、模數(shù)、分度圓直徑2、主減速器斜齒圓柱齒輪的幾何尺寸計算 根據(jù)公式計算各項(xiàng)參數(shù)3、主減速器斜齒圓柱齒輪的強(qiáng)度計算齒輪彎曲強(qiáng)度、齒輪接觸強(qiáng)度斜齒圓柱齒輪主要參數(shù)選擇主、從動錐齒輪齒數(shù)Z1和Z2 Z1=14、Z2=43從動錐齒輪法向模數(shù)ms ms=6mm主、從動錐齒輪齒面寬b1、b2 b1取65mm、b2取60mm節(jié)圓直徑 d1=87mm,d2=265mm驅(qū)動橋設(shè)計主減速器設(shè)計序號名稱代號小齒輪大齒輪計算結(jié)果1齒數(shù)比uu=z21/z22,按傳動要求確定3.072分度圓直徑ded21=87mmd22=265mm3齒數(shù)z設(shè)計值設(shè)計值z21=14,z22=434法向模數(shù)mn推薦值65法向壓力角推薦值206螺旋角推薦值一般為1520157齒寬系數(shù)d一般取0.850.858齒寬bb1=dd21b2=b1-5b1=75mmb2=70mm9齒距pp=mn18.84mm10齒頂高h(yuǎn)aha=han*mnhan*=16mm11齒根高h(yuǎn)fhf=cn*mn7.5mm12齒全高h(yuǎn)h=ha+hf13.5mm13中心距aa=1/2(d1+d2)可圓整176mm14齒頂圓直徑dada=d+2hada1=99mm,da2=277mm15齒根圓直徑dfdf=d-2hfdf1=72mm,df2=250mm主減速器斜齒圓柱齒輪的幾何尺寸計算主減速器三維模型驅(qū)動橋設(shè)計差速器設(shè)計差速器齒輪的基本參數(shù)選擇行星齒輪數(shù)n、行星齒輪球面半徑RB、行星齒輪與半軸齒輪的選擇、壓力角差速器齒輪的幾何計算根據(jù)公式計算各項(xiàng)參數(shù)差速器齒輪的強(qiáng)度計算對于差速器齒輪主要應(yīng)進(jìn)行彎曲強(qiáng)度校核驅(qū)動橋設(shè)計差速器設(shè)計行星齒輪數(shù)Z110,取最小值Z1=10半軸齒輪齒數(shù)Z2=1425Z2=18模數(shù)mm=6齒面寬b=(0.250.30)A0b=15mm工作齒高h(yuǎn)g=1.6mhg=9.6mm全齒高h(yuǎn)=1.788m+0.05110.779壓力角25軸交角=90=90節(jié)圓直徑d1=mz1,d2=mz2d1=60mm,d2=108mm節(jié)錐角1=29.06,2=60.94節(jié)錐距A0=61.77mm周節(jié)t=3.1416mt=18.849mm齒頂高h(yuǎn)a1=6.33mm,ha2=3.27mm齒根高h(yuǎn)f1=1.788m-ha1;hf2=1.788m-ha2hf1=4.398mm;hf2=7.458mm徑向間隙c=h-hg=0.188m+0.051c=1.179齒根角1=4.0722=6.884面錐角01=1+2;02=2+101=35.93902=65.017差速器齒輪的幾何計算表驅(qū)動橋設(shè)計差速器設(shè)計差速器三維模型驅(qū)動橋設(shè)計驅(qū)動半軸設(shè)計半軸的結(jié)構(gòu)形式分析采用只承受轉(zhuǎn)矩的全浮式半軸半軸的結(jié)構(gòu)設(shè)計直徑、花鍵等的計算半軸的強(qiáng)度計算扭轉(zhuǎn)切應(yīng)力、扭轉(zhuǎn)角半軸的材料及熱處理材料為中碳合金鋼,熱處理方式為調(diào)質(zhì)處理半軸的三維模型制動器設(shè)計同步附著系數(shù)分析在0的路面上制動,地面的附著條件可以得到充分利用制動器的有關(guān)計算制動鼓內(nèi)徑、摩擦襯片的包角及寬度、摩擦襯片起始角制動器主要零件的結(jié)構(gòu)設(shè)計制動鼓、制動蹄、制動底板、制動蹄的支承驅(qū)動橋設(shè)計橋殼設(shè)計整體式橋殼的結(jié)構(gòu)整個橋殼是一個空心梁,橋殼和主減速器殼為兩體橋殼的受力分析有限元分析橋殼的強(qiáng)度計算驅(qū)動橋殼有限元分析材料屬性橋殼材料采用通用低合金高強(qiáng)度結(jié)構(gòu)鋼,材料的屈服極限強(qiáng)度為450MPa,彈性模量E=2.06105MPa,泊松比v=0.3網(wǎng)格劃分經(jīng)ANSYS自動劃分網(wǎng)格后,該有限元模型共有節(jié)點(diǎn)數(shù)89768,單元數(shù)47294如右圖所示驅(qū)動橋殼有限元分析驅(qū)動橋殼有限元分析最大垂向力工況驅(qū)動橋殼有限元分析最大牽引力工況驅(qū)動橋殼有限元分析最大制動力工況結(jié)論主減速器采用雙級主減速器,第一級為圓錐齒輪減速,第二級為圓柱齒輪減速差速器采用行星齒輪差速器半軸采用全浮式半軸半軸用有限元分析校核其強(qiáng)度,均符合使用標(biāo)準(zhǔn)收獲與不足收獲:對驅(qū)動橋的具體結(jié)構(gòu)和工作原理有了進(jìn)一步的認(rèn)識不足:對整個畢業(yè)設(shè)計的時間把握的很不到位我對各種日后走上工作崗位后可能用到的軟件十分不熟悉。畢業(yè)設(shè)計內(nèi)容相關(guān)的同學(xué)所做的交流太少哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計)—資料翻譯
叉車驅(qū)動橋鎖緊螺母松動分析
S. J. Chu
School of Mechanical Engineering, University of Ulsan, Ulsan,
680-749, Korea摘 要
本研究探討鎖緊螺母在叉車驅(qū)動橋上松動的原因。輪軸的結(jié)構(gòu)組件分析顯示在鎖緊螺母的接觸表面的滑移是相當(dāng)大的,尤其是當(dāng)軸承組的預(yù)加載荷缺乏的時候。肉眼觀察的磨損接觸面的顯示,圓形的劃痕形成的半徑幾乎與結(jié)構(gòu)分析在滑移距離的結(jié)果相同。鎖緊螺母的松動模擬實(shí)驗(yàn)成功進(jìn)行。
關(guān)鍵詞:螺紋松動;結(jié)構(gòu)分析;軸承預(yù)緊力;滑點(diǎn);實(shí)驗(yàn)?zāi)M。
第1章 介紹
在叉車的傳動系統(tǒng)中,扭矩以相對較低的速度傳遞給驅(qū)動橋。因此,一個直徑相對較小的軸就可以傳遞所需要的功率。在驅(qū)動橋中,該轉(zhuǎn)矩通過行星齒輪減速增扭,并傳遞到輪軸。因此,有足夠大的扭矩傳遞給車輪。
行星齒輪系統(tǒng)包括一個太陽輪,三個行星齒輪和一個齒圈。輸入軸連接到太陽輪,而輸出軸被連接到行星齒輪,與此同時,齒圈則是一直固定的。這是一個典型的減速裝置。由于輪軸通過花鍵連接到行星架,因此無法在缺少鎖緊螺母的情況下將輪軸固定在行星架上。當(dāng)鎖緊螺母被擰緊時,它將輪軸而行星架表面連接到一起。圓錐滾子軸承套之間互相緊挨,增大軸承套支承在輪軸的預(yù)載荷。
鎖緊螺母的松動故障時有發(fā)生。在工廠收緊的鎖緊螺母被松開后,在該區(qū)域旋轉(zhuǎn)。因此,輪軸可能反復(fù)來回滑動。如果情況進(jìn)一步惡化,輪軸有可能完全從行星架拉出,從而造成如叉車側(cè)翻等的嚴(yán)重事故。
許多研究人員對松動的螺栓現(xiàn)象進(jìn)行了研究。派和海斯發(fā)現(xiàn)螺栓松動是由于被夾緊的表面間的滑移,即螺栓頭和夾緊件的螺紋之間或螺栓和螺母之間的滑移。凱西,弗里德和蘭芝則進(jìn)行了一項(xiàng)螺栓搭接接頭通過反復(fù)施加剪切載荷而引起的緊固板之間的滑動的螺栓松動測試。巴特查亞,森和達(dá)斯通過施加垂直于螺栓軸線的螺紋緊固件的振動來測試的防松能力。
在本文中,鎖緊螺母松動的原因,采用了驅(qū)動橋總成的三維有限元分析,肉眼觀察失效的鎖緊螺母面和在試驗(yàn)臺上進(jìn)行實(shí)驗(yàn)?zāi)M等多種研究方法。第2章 失效分析與仿真
2.1.猜想與結(jié)構(gòu)分析
鎖緊螺母的頂面原來是一個平坦表面,如圖1(a)所示。它是通過在輪軸上的軸向緊固力保持與行星架的接觸。失效的鎖緊螺母如圖1(b)所示,其中的環(huán)形區(qū)域有所降低,降低的區(qū)域的徑向厚度為3.5mm。這僅僅是一個徑向厚度的區(qū)域重疊的行星架的表面。鎖緊螺母顯現(xiàn)仿佛它正在因?yàn)檫^度的接觸壓力而坍塌壓縮。在本研究中使用的有限元分析的工具是CATIA的結(jié)構(gòu)分析模塊。
圖1(a) 圖1(b)
無關(guān)的問題的某些部分已從研究中剔除。在圖2的結(jié)構(gòu)分析中,只有六個部分為藍(lán)本(1:輪軸,2:軸承32012,3:軸承33013,4:支承載體,5:鎖緊螺母,6:行星架)。
輪胎的輪負(fù)荷是通過輪轂殼體傳遞到輪軸,再從輪軸傳遞到圓錐滾子軸承,由軸承套支承。在圖2中未顯示的間隔圈,限制了軸承之間的最小距離。因而軸承上的預(yù)加載可以是有界限的,可用預(yù)先設(shè)定的電平加以限制。因?yàn)樗穷A(yù)載荷在失效中發(fā)揮重要作用,所以軸承被更詳細(xì)地分為由三個獨(dú)立的部分:即內(nèi)圈,滾子和外圈。因此,8個接觸體相連,如表1所示。多種類型的連接可在CATIA結(jié)構(gòu)分析中找到,如接觸連接,連接緊固,緊固螺栓連接等。由于在這個問題上的所有連接都基本上彼此相關(guān),所以接觸的連接通常被廣泛使用。有節(jié)制地使用固定連接,滑動或分離則不太會發(fā)生。這并不會影響該方案,但允許更容易和更簡單的建模。所述螺栓擰緊連接被廣泛地用于擰緊鎖緊螺母。利用對稱性時,組件沿垂直對稱平面切割,則只有一半需要建模。線性四面體單元網(wǎng)格是在生產(chǎn)是設(shè)定全球網(wǎng)目尺寸為5毫米。關(guān)鍵部件,如軸承,鎖緊螺母,其接觸表面,本地網(wǎng)孔尺寸被設(shè)置到2.5毫米。其中,鎖緊螺母的材料為SCM440。
圖2
所述承載殼的凸緣被夾持以作為位移的邊界條件,該載體的左右兩端除了軸向位移外其余也被約束。在行業(yè)中,鎖緊螺母要被擰緊,直到以無車輪載荷下轉(zhuǎn)動輪軸所需要的扭矩增大到一定程度。鎖緊螺母被擰緊到預(yù)定扭矩T,在承載面的摩擦被認(rèn)為以及在螺紋上的摩擦。鎖緊螺母的緊固力Q選自計算式(1)和表2中公式:
T = Q dm tan(λ+ρ) /2+fQRm
輪負(fù)荷是在輪軸垂直施加的,任一單輪胎或雙輪胎都可以安裝在車輪上。如果安裝雙輪胎時,則負(fù)載的中心會偏離輪軸74毫米,如圖(3)所示。
因?yàn)檩嗀?fù)荷的幅度和荷載作用點(diǎn)之間的距離較大,所以相比于單輪胎類型而言,雙輪胎類型會導(dǎo)致輪軸承受更多的彎矩。由于輪殼體已被移除,則負(fù)載在中心的空點(diǎn)處施加。類似于剛性連接虛部,在CATIA結(jié)構(gòu)分析用于負(fù)載的中心連接至輪軸。
作為所述隔離物,對軸承的預(yù)載荷取決于墊片與內(nèi)圈之間的間隙。本研究對初始間隙1.0毫米和無間隙這兩個典型的案例進(jìn)行了分析。
圖3
圖4(a) 圖4(b)
圖4(c)
首先,假定初始間隙為1毫米。結(jié)構(gòu)分析結(jié)果表明,這兩種軸承都很好地將擰緊力施加在預(yù)裝的鎖緊螺母上。如圖4(a)所示。
接著,由于雙輪胎被施加負(fù)荷,左軸承的上部有最嚴(yán)重的壓縮而右軸承的下部則沒有這么嚴(yán)重的壓縮,如圖4(b)所示。施加在鎖緊螺母的接觸應(yīng)力為大致小于1MPa,這個應(yīng)力尚不能引起屈服。被壓縮的環(huán)形表面無法通過簡單的壓縮接觸壓力來形成。據(jù)發(fā)現(xiàn),即使當(dāng)車輪的軸是由預(yù)加載的軸承支撐,也是在相對于所述承載殼平面稍微轉(zhuǎn)動,而不是在平面外。行星架面鎖緊螺母的滑動,如4(c)所示。
第二,人們認(rèn)為墊片和內(nèi)圈之間沒有初始間隙。結(jié)構(gòu)分析結(jié)果表明,這兩種軸承都不能預(yù)加載,僅內(nèi)圈能被施加為如圖5(a)所示的鎖緊螺母緊固力。
接著,作為雙輪胎施加負(fù)荷,左軸承的上部有最嚴(yán)重的壓縮,同時右軸承的下部也被壓縮,如圖5(b)所示。相比第一種情況,滾子的壓縮部分在第二種情況下是較小的。鎖定螺母的接觸應(yīng)力也大致小于1 MPa以下,該應(yīng)力也太小,無法引起屈服。由于輪軸由??未預(yù)加載的軸承來支承,它在相對載波殼體平面中嚴(yán)重地轉(zhuǎn)動。鎖緊螺母在載體面滑動0.44毫米,如圖5(c)所示。相比第一種情況下為1.0毫米的初始間隙,滑移已增大到2.4倍。
圖5(a) 圖5(b)
圖5(c)
滑移都被看作是相關(guān)的松動。松動的過程與圖 6所示情形非常相似,是一種松動失效。
2.2.肉眼觀察
降低的環(huán)形表面用較低分辨率的USB數(shù)字顯微鏡進(jìn)行觀察。其中的高度,即徑向厚度,為3.5mm。很容易觀察到許多圓形的劃痕,好像它們沿圓周方向被一前一后堆疊著。
圓弧的圓的直徑是通過繪制在照片上的圓計量進(jìn)行測量的,大約為1.0mm,如圖7所示。
圖7
在考慮兩種幀的情況下對圓形劃痕形成過程進(jìn)行了研究,如圖8所示。
圖8
其中一幀是像是一個靜止觀察者,而另一個是一個帶有鎖緊螺母的旋轉(zhuǎn)框架,像是觀察者在旋轉(zhuǎn)的鎖緊螺母上的視角。
鎖緊螺母旋轉(zhuǎn)的輪軸通過向下滑動來固定框架,而圓形劃痕則在鎖緊螺母表面慢慢形成。從結(jié)構(gòu)分析結(jié)果來看,當(dāng)軸承不預(yù)裝是滑動距離最大達(dá)到0.44毫米,滑動距離與到圓形劃痕的半徑一致。
即使預(yù)裝軸承市,滑移也會發(fā)生。如果鎖緊螺母的材料不耐磨,則環(huán)形區(qū)域最終會被磨掉。此時緊固力很快就會下降,這種情況會導(dǎo)致類似于以前的結(jié)果。
2.3.實(shí)驗(yàn)?zāi)M
鎖緊螺母在測試表上進(jìn)行了松動的實(shí)驗(yàn)?zāi)M。
圖9
如該圖9所示,在輪軸前端的輪轂凸緣是由一個液壓致動器的模擬輪在向上提拉。同時,輪軸的后端部被連接到一個電動機(jī)的模擬驅(qū)動載體上。法蘭殼體則用一個垂直厚板夾緊在桌子上。電機(jī)的轉(zhuǎn)速設(shè)定為150rpm,負(fù)荷設(shè)定為34kN。因?yàn)樵谳嗇S端部的垂直位移開始增加,這表明鎖定螺母被擰松,實(shí)驗(yàn)?zāi)M到此停止。拆開輪軸組件,觀察鎖緊螺母的接觸表面。降低的環(huán)狀區(qū)域被擴(kuò)大,但并不完全。
如圖10所示,疲勞區(qū)域正在發(fā)展成為二十個獨(dú)立的區(qū)域。半徑0.3?0.4 mm圓形的劃痕如圖11所示,半徑比鎖緊螺母在現(xiàn)場操作的小。由于接觸表面被越來越多地磨損,所以半徑有望達(dá)到0.5mm左右。
圖10
圖11
- 12 -
結(jié)論
鎖緊螺母的接觸面由過大的接觸壓力首先出現(xiàn)崩塌。然而,結(jié)構(gòu)分析結(jié)果表明,該應(yīng)力并沒有大到足以引發(fā)屈服的程度,但在接觸表面上引起的滑移是相當(dāng)大的。當(dāng)沒有預(yù)裝軸承是,滑移變的更大。
肉眼觀察的接觸面的顯示,在其上產(chǎn)生了相當(dāng)數(shù)量的圓形劃痕。由于鎖螺母的旋轉(zhuǎn),垂直滑移也會產(chǎn)生相應(yīng)的圓形劃痕。圓形劃痕的半徑對應(yīng)相應(yīng)的垂直滑動。
對鎖緊螺母的失效進(jìn)行了實(shí)驗(yàn)?zāi)M,當(dāng)加載點(diǎn)的位移開始增加時,模擬即被停止。圓形劃痕在模擬實(shí)驗(yàn)中成功形成??梢缘贸鼋Y(jié)論,鎖緊螺母因?yàn)槠浔砻娴幕贫凰砷_,表面的失效磨損則加速了松動。
哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計)—中期檢查報告
本科畢業(yè)論文(設(shè)計)
中期檢查報告
論文題目
某商用車雙速主減速器驅(qū)動橋設(shè)計
班 級
1001202
姓 名
汪方良
院(系)
汽車工程學(xué)院
導(dǎo) 師
劉濤
報告時間
1.論文工作是否按開題報告預(yù)定的內(nèi)容及進(jìn)度安排進(jìn)行
論文工作,基本按照開題報告預(yù)定內(nèi)容進(jìn)行,已提前完成部分任務(wù),但也有較多任務(wù)落后于原定計劃。
總體方案已經(jīng)大致確定,驅(qū)動橋各部分的設(shè)計計算除驅(qū)動橋殼外均已完成。但是在三維建模方面,進(jìn)度則略微落后于原定計劃。另外,也有些許任務(wù)提前完成,如外文文獻(xiàn)的翻譯工作。
2.目前已完成的研究工作及結(jié)果
此部分內(nèi)容表述,應(yīng)通過文字表述和圖表相結(jié)合的方式進(jìn)行。力求完全真實(shí)的展示已完成的工作。
所謂圖表,是指學(xué)生自己完成的工作以圖表形式展示,如適量的實(shí)體設(shè)計軟件中的截圖、程序控制及系統(tǒng)控制框圖、總體構(gòu)成示意圖、規(guī)劃示意圖、計算結(jié)果數(shù)據(jù)表等。
此部分內(nèi)容表述范例:
以下文字僅供參考,并非標(biāo)準(zhǔn)通用文字,切勿隨意保留或復(fù)制。
(1)首先集中地進(jìn)行文獻(xiàn)的搜集工作,在設(shè)計初期對本課題有了較為清晰的認(rèn)識,明確了設(shè)計任務(wù)。
(2)確定總體的布置方案,對驅(qū)動橋的各個部分進(jìn)行了設(shè)計計算?,F(xiàn)階段,除驅(qū)動橋殼外,其余部分的設(shè)計工作均已完成。
(3)建立了驅(qū)動橋中某些部分的三維模型。
(4)翻譯外文文獻(xiàn)一篇——《對叉車驅(qū)動橋鎖緊螺母松動的分析》
3.后期擬完成的研究工作及進(jìn)度安排
(1)擬完成的研究工作:完成整個驅(qū)動橋的三維實(shí)體建模,繪制重要部分的二維工程圖;對驅(qū)動橋殼進(jìn)行有限元分析;撰寫畢業(yè)論文。
(2)進(jìn)度安排:1~2周進(jìn)行驅(qū)動橋殼的設(shè)計計算和剩余部分的三維建模;3~4周進(jìn)行驅(qū)動橋殼有限元分析;5~6周進(jìn)行論文的撰寫。
4.存在的困難與問題
(1)問題與困難:由于對軟件的熟悉程度不夠,對零件裝配還完全沒有掌握,可能會影響整體效率;有限元分析尚未接觸,需要從零開始學(xué)習(xí),可能會拖慢整體進(jìn)度。
(2)解決方法:多于對軟件較為熟悉的同學(xué)交流,在同學(xué)的指導(dǎo)下學(xué)習(xí)并完成相關(guān)的任務(wù)。
5.如期完成全部論文工作的可能性
論文工作是否進(jìn)展順利,預(yù)計能夠如期地完成論文工作。
中期報告檢查組意見:(以下空4~6行文字)
組長(簽字):
年 月 日
(此行置于頁面底部)
- 4 -
哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計)—開題報告
本科畢業(yè)論文(設(shè)計)
開 題 報 告
論文題目
某商用車雙速主減速器驅(qū)動橋設(shè)計
班 級
1001202
姓 名
汪方良
院(系)
汽車工程學(xué)院
導(dǎo) 師
劉濤
開題時間
2013年12月23日
- 16 -
1、 課題研究的目的和意義
本課題是為了提高汽車驅(qū)動橋的設(shè)計效率、縮短設(shè)計周期而提出的。
驅(qū)動橋處于汽車結(jié)構(gòu)傳動系的末端,用來增大由傳動軸或直接由變速器傳來的轉(zhuǎn)矩,并將轉(zhuǎn)矩分配給左、右驅(qū)動車輪,并使車輪具有汽車行駛運(yùn)動學(xué)所要求的差速功能;同時,驅(qū)動橋還要承受作用于路面和車架或車廂之間的鉛垂力、縱向力和橫向力[1]。在一般的汽車結(jié)構(gòu)中,驅(qū)動橋包括主減速器(又稱主傳動器)、差速器、驅(qū)動車輪的傳動裝置及橋殼等部件[2]。
對于商用車來說,要傳遞的轉(zhuǎn)矩較乘用車和客車都要大得多,以便能夠以較低的成本獲得更高的工作能力,所以選擇功率較大的發(fā)動機(jī),這就對傳動系統(tǒng)有較高的要求,而驅(qū)動橋在傳動系統(tǒng)中起著舉足輕重的作用[3]。隨著目前國際上石油價格的上漲,貨車的經(jīng)濟(jì)性日益成為人們關(guān)心的話題,這不僅僅只對貨車,對于汽車和其他工程機(jī)械,提高其燃油經(jīng)濟(jì)性也是各貨車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶。為了降低油耗,不僅要在發(fā)動機(jī)的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。這就必須在發(fā)動機(jī)的動力輸出之后,在從發(fā)動機(jī)—傳動軸—驅(qū)動橋這一動力輸送環(huán)節(jié)中尋找減少能量在傳遞的過程中的損失。在這一環(huán)節(jié)中,發(fā)動機(jī)是動力的輸出者,也是整個機(jī)器的心臟,而驅(qū)動橋則是將動力轉(zhuǎn)化為能量的最終執(zhí)行者。因此,在發(fā)動機(jī)相同的情況下,采用性能優(yōu)良且與發(fā)動機(jī)匹配性比較高的驅(qū)動橋便成了有效節(jié)油的措施之一。所以設(shè)計新型的驅(qū)動橋成為新的課題。
隨著AutoCAD、CATIA、ANSYS等計算機(jī)軟件的廣泛運(yùn)用,在驅(qū)動橋的生產(chǎn)制造和工作過程中,廣泛的用到了計算機(jī)輔助設(shè)計CAD技術(shù)和計算機(jī)輔助工程CAE技術(shù)。把有限元法、優(yōu)化設(shè)計、疲勞累積損傷理論等應(yīng)用到驅(qū)動橋設(shè)計當(dāng)中后,不但節(jié)省了大量人力和時間,而且可以獲得技術(shù)、經(jīng)濟(jì)最佳的設(shè)計,大大提高了設(shè)計效率、縮短了設(shè)計周期[4]。
2、國內(nèi)外研究現(xiàn)狀
汽車和汽車工業(yè)在國民經(jīng)濟(jì)、現(xiàn)代社會及人民生活中具有十分重要的作用。在當(dāng)前中國的經(jīng)濟(jì)建設(shè)事業(yè)中,汽車處于十分突出和優(yōu)先的地位。近年來汽車工業(yè)在中國機(jī)械工業(yè)各行業(yè)中,其增長速度雖有所回落,但相對比其它行業(yè)仍處于較高水平。但是中國汽車業(yè)的發(fā)展仍然遠(yuǎn)遠(yuǎn)趕不上需求,即使汽車工業(yè)的發(fā)展及汽車技術(shù)均有所提高,但中國汽車工業(yè)距國際水平還有相當(dāng)?shù)牟罹?。以?qū)動橋?yàn)槔?,雖然驅(qū)動橋的設(shè)計和制造工藝都在日益完善,除了廣泛采用新技術(shù)外,在結(jié)構(gòu)設(shè)計中也日益朝著“零件標(biāo)準(zhǔn)化、部件通用化、產(chǎn)品系列化”的方向發(fā)展及生產(chǎn)組織的專業(yè)化日標(biāo)前進(jìn)。但驅(qū)動橋產(chǎn)品設(shè)計和研究方面距離仍然很大,這方面應(yīng)該為中國的許多部門和企業(yè)所認(rèn)識。目前,我國的驅(qū)動橋設(shè)計,基本上尚處在類比設(shè)計和經(jīng)驗(yàn)設(shè)計階段,這樣的設(shè)計往往偏于保守而限制了驅(qū)動橋性能的提高和產(chǎn)品成本的降低。因此,我國驅(qū)動橋產(chǎn)品設(shè)計與國外的主要差距之一是所設(shè)計的驅(qū)動橋過于笨重。在現(xiàn)代驅(qū)動橋設(shè)計中,要使其做到盡可能的輕量化不但可以節(jié)省材料消耗和降低成本,而且可以合理的規(guī)劃汽車簧上簧下質(zhì)量、降低動載和提高汽車的平順性[4-5]。?
汽車驅(qū)動橋是汽車的重要總成,它的性能好壞直接影響整車性能,而對于重型卡車尤為重要,當(dāng)采用大功率發(fā)動機(jī)輸出大的轉(zhuǎn)矩以滿足目前重型卡車的快速、重載的高效率、高效益的需要時,必須要搭配一個高效、可靠的驅(qū)動橋。
對于中重型載貨汽車來說,要傳遞的轉(zhuǎn)矩比較于乘用車和客車,以及輕型商用車都要大得多,以便能夠以較低的成本運(yùn)輸較多的貨物,所以選擇功率較大的發(fā)動機(jī),這就對傳動系統(tǒng)有較高的要求,而驅(qū)動橋在傳動系統(tǒng)中起著舉足輕重的作用。隨著目前國際上石油價格的上漲,汽車的經(jīng)濟(jì)性日益成為人們關(guān)心的話題,這不僅僅對乘用車,對于載貨汽車,提高其燃油經(jīng)濟(jì)性也是各商用車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶,因?yàn)橹兄匦洼d貨汽車所采用的發(fā)動機(jī)都是大功率,大轉(zhuǎn)矩的,百公里油耗都較高。以解放CA141型卡車為例,其百公里油耗高達(dá)26.5L[6]。為了降低油耗,不僅要在發(fā)動機(jī)的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。這就必須在發(fā)動機(jī)的動力輸出之后,在從發(fā)動機(jī)—傳動軸—驅(qū)動橋這一動力輸送環(huán)節(jié)中尋找減少能量在傳遞的過程中的損失。在這一環(huán)節(jié)中,發(fā)動機(jī)是動力的輸出者,也是整個機(jī)器的心臟,而驅(qū)動橋卻是將動力轉(zhuǎn)化為能量的最終執(zhí)行者。因此,在發(fā)動機(jī)相同的情況下,采用性能優(yōu)良且與發(fā)動機(jī)匹配性比較高的驅(qū)動橋便成了有效節(jié)油的措施之一[7]。所以設(shè)計新型的驅(qū)動橋便成為新的課題。?
目前國內(nèi)重型車橋生產(chǎn)企業(yè)也主要集中在中信車橋廠、東風(fēng)襄樊車橋公司、濟(jì)南橋箱廠、漢德車橋公司、重慶紅巖橋廠和安凱車橋廠幾家企業(yè)。這些企業(yè)幾乎占到國內(nèi)重卡車橋90%以上的市場。?
目前國內(nèi)外驅(qū)動橋傳動系統(tǒng)結(jié)構(gòu)設(shè)計出現(xiàn)了一下一些變化:?
(1)、主要部件和功能向驅(qū)動橋的中部集中?
有些廠家開始把主減速器,?制動器和行星減速機(jī)構(gòu)等集合在橋的中部,?但其優(yōu)點(diǎn)尚待考證。?
(2)、橋殼采用球墨鑄鐵,?以提高整橋外觀質(zhì)量??
橋殼采用球墨鑄鐵,?加工成本低,?其鑄造及加工后的外觀質(zhì)量均比現(xiàn)在大多采用的鑄鋼橋有很大的提高。?
(3)、適應(yīng)特種要求的多功能驅(qū)動橋?
為適應(yīng)主機(jī)產(chǎn)品的特殊要求,?驅(qū)動橋產(chǎn)品供應(yīng)廠家設(shè)法在橋上增加引進(jìn)了一些特殊功能:自動充氣功能、超載報警功能、增添轉(zhuǎn)向油缸功能等,?增加了驅(qū)動橋產(chǎn)品的適應(yīng)性[8-11]。
3. 本課題的研究內(nèi)容及技術(shù)方案
本論文主要是以某商用車的驅(qū)動橋設(shè)計為主,具體參數(shù)以解放CA141的相關(guān)參數(shù)為參考。通過實(shí)習(xí)、調(diào)查、上網(wǎng)以及文獻(xiàn)檢索等多種有效方法搜集相關(guān)資料后,決定按照以下步驟進(jìn)行此次設(shè)計:
(1)主減速器設(shè)計?
①?主減速器的結(jié)構(gòu)形式及其基本參數(shù)的選擇;?
②?主減速器內(nèi)外零部件的結(jié)構(gòu)分析、型式選擇及二維圖紙的繪制。?
(2)差速器設(shè)計?
①?差速器的形式及其參數(shù)的選擇;?
②?同步器主要參數(shù)的確定及設(shè)計計算,繪制出二維圖紙。?
(3)驅(qū)動車輪的傳動裝置設(shè)計?
①?半軸形式的確定及驅(qū)動車輪傳動裝置萬向節(jié)的選擇;?
②?半軸及驅(qū)動車輪傳動裝置萬向節(jié)二維圖紙的繪制。?
(4)驅(qū)動橋橋殼設(shè)計?
① 橋殼的結(jié)構(gòu)形式選擇及其受力分析、強(qiáng)度計算;?
② 驅(qū)動橋橋殼的二維設(shè)計。
(5)制動器設(shè)計?
①?制動器的形式和參數(shù)的確定;?
③ 制動器的設(shè)計計算,并進(jìn)行三維實(shí)體模型的建立[12-16]。
4.進(jìn)度安排
第1~3周:搜集資料,撰寫開題報告;
第4~7周:確定總體方案,進(jìn)行驅(qū)動橋設(shè)計計算;
第8~13周:三維實(shí)體建模,繪制二維工程圖;
第14~15周:對驅(qū)動橋殼進(jìn)行有限元分析;
第16~17周:撰寫畢業(yè)設(shè)計論文;
第18周:準(zhǔn)備答辯。
[1]張學(xué)忱, 張濤, 張慧波. CA1040P90L2 輕型貨車驅(qū)動橋設(shè)計[J]. 工程圖學(xué)學(xué)報, 2011, 32(6): 5-8.
[2] 劉昌仁. JQ8QH 后驅(qū)動橋設(shè)計[J]. 客車技術(shù)與研究, 1994, 3: 006.
[3] 廖紅利, 楊愛民. DD32/120 系列后橋結(jié)構(gòu)設(shè)計[J]. 客車技術(shù), 2012 (3): 29-30.
[4]張君媛, 楊陽. 汽車總布置的參數(shù)化設(shè)計[J]. 汽車技術(shù), 1997 (10): 19-22.
[5] 重卡驅(qū)動橋AGV裝配線的開發(fā).[ 2013-08-19]. http://auto.vogel.com.cn/2013/0819/news_376449.html
[6] 谷旭照. 解放牌 CA141 型五噸載貨汽車簡介[J]. 汽車技術(shù), 1987, 1: 001.
[7] 許拔民. 汽車油耗標(biāo)準(zhǔn)及技術(shù)法規(guī)的現(xiàn)狀與發(fā)展[J]. 中國機(jī)動車排放控制委員會 CVEC 通訊, 2005.
[8] 之昊. 2009 年上半年國內(nèi)重型車市場分析及下半年市場走勢預(yù)測[J]. 汽車情報, 2009 (21): 12-15.
[9] 蒲俊萍. 風(fēng)景這邊獨(dú)好——重慶紅巖車橋廠, 車架涂裝線技改項(xiàng)目竣工投產(chǎn)[J]. 中國物流與采購, 2004 (3): 60-61.
[10] 劉軍利. 漢德公司成為 MAN 公司重型車橋亞洲區(qū)域唯一合作伙伴[J]. 商用汽車, 2004 (5): 18-18.
[11] 韓世永. 旗艦起錨——東風(fēng)德納車橋有限公司改革發(fā)展紀(jì)實(shí)[J]. 時代汽車, 2010, 4: 042.
[12] 李紅淵, 李萍鋒. 載重汽車驅(qū)動橋主減速器設(shè)計[J]. 農(nóng)業(yè)裝備與車輛工程, 2009, 10: 017.
[13] 王小椿, 吳序堂, 彭煒. 高性能變傳動比差速器的研究[J]. 西安交通大學(xué)學(xué)報, 1990, 24(2): 1-8.
[14] 張驕, 楊建偉. 重載貨車驅(qū)動橋殼有限元分析[J]. 機(jī)械設(shè)計與研究, 2010, 26(002): 118-120.
[15] 梁洪明, 王靖岳, 李學(xué)明. 基于 CATIA 和 ANSYS 的貨車驅(qū)動橋殼有限元分析[J]. 汽車工程師, 2012 (10): 34-35.
[16] 孫麗. 鼓式制動器設(shè)計與效能分析[J]. 現(xiàn)代制造工程, 2010 (008): 66-68.
開題報告檢查組意見:(以下空4~6行文字)
組長(簽字):
年 月 日
(此行置于頁面底部分)
- 5 -
班級:1001202 學(xué)號:100120206 姓名:汪方良 所需參數(shù)參考解放CA141的相關(guān)參數(shù)一一 :課題課題研究的目的和意義研究的目的和意義提高汽車驅(qū)動橋的設(shè)計效率、縮短設(shè)計周期利用AutoCAD、CATIA、ANSYS等計算機(jī)軟件,可以充分發(fā)揮計算機(jī)輔助設(shè)計CAD技術(shù)和計算機(jī)輔助工程CAE技術(shù)。如此,不但節(jié)省了大量人力和時間,而且可以獲得技術(shù)、經(jīng)濟(jì)最佳的設(shè)計,大大提高了設(shè)計效率、縮短了設(shè)計周期。二二 :國內(nèi)外:國內(nèi)外研究現(xiàn)狀研究現(xiàn)狀國內(nèi)外差距主要以下兩方面:1、國內(nèi)所設(shè)計的驅(qū)動橋過于笨重 2、傳遞過程能力損失大目前國內(nèi)外設(shè)計變化 1、主要部件和功能向驅(qū)動橋的中部集中 2、橋殼采用球墨鑄鐵,以提高整橋外觀質(zhì)量 3、適應(yīng)特種要求的多功能驅(qū)動橋三:本課題的研究內(nèi)容及技術(shù)方案1、主減速器設(shè)計2、差速器設(shè)計3、驅(qū)動車輪的傳動裝置設(shè)計4、橋殼設(shè)計5、制動器設(shè)計主減速器設(shè)計1、主減速器的結(jié)構(gòu)形式 主減速器的齒輪類型 主減速器的減速形式 主減速器主,從動錐齒輪的支撐方案2、主減速器基本參數(shù)選擇與計算載荷的確定 主減速器齒輪計算載荷的確定 齒輪主要參數(shù)選擇 主減速器齒輪的幾何尺寸計算 主減速器圓弧錐齒輪的強(qiáng)度計算 主減速器錐齒輪軸承的載荷計算差速器設(shè)計差速器的形式選擇差速器的參數(shù)選擇差速器齒輪的幾何計算差速器齒輪的強(qiáng)度計算驅(qū)動車輪的傳動裝置設(shè)計半軸設(shè)計半軸結(jié)構(gòu)形式的確定半軸計算載荷的確定半軸的強(qiáng)度計算半軸的材料與熱處理半軸花鍵的強(qiáng)度計算驅(qū)動橋橋殼設(shè)計橋殼結(jié)構(gòu)的確定橋殼的受力分析與強(qiáng)度計算橋殼的有限元分析制動器設(shè)計制動器結(jié)構(gòu)形式的選擇制動器技術(shù)參數(shù)的確定與尺寸計算制動器制動力矩與張開力的計算制動器主要零部件的結(jié)構(gòu)設(shè)計四、四、進(jìn)度進(jìn)度安排安排第13周:搜集資料,撰寫開題報告;第47周:確定總體方案,進(jìn)行驅(qū)動橋設(shè)計計算;第813周:三維實(shí)體建模,繪制二維工程圖;第1415周:對驅(qū)動橋殼進(jìn)行有限元分析;第1617周:撰寫畢業(yè)設(shè)計論文;第18周:準(zhǔn)備答辯。哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計)
摘要
驅(qū)動橋是構(gòu)成汽車的四大總成之一,位于傳動系的末端,其基本功用首先是增扭、降速、改變轉(zhuǎn)矩的傳遞方向,并將轉(zhuǎn)矩合理地分配給左、右驅(qū)動車輪;其次,驅(qū)動橋還承受作用于路面和車架或車身之間的力。驅(qū)動橋一般由主減速器、差速器、車輪傳動裝置和橋殼等組成。驅(qū)動橋的性能好壞直接影響整車性能,而對于載重汽車顯得尤為重要。驅(qū)動橋設(shè)計應(yīng)主要保證汽車在給定的條件下具有最佳的動力性和燃油經(jīng)濟(jì)性。故,當(dāng)采用大功率發(fā)動機(jī)輸出大的轉(zhuǎn)矩以滿足目前載重汽車的快速、重載的高效率、高效益的需要時,必須搭配一個高效、可靠的驅(qū)動橋。
本設(shè)計參照傳統(tǒng)驅(qū)動橋的設(shè)計方法進(jìn)行了載重汽車驅(qū)動橋的設(shè)計。在設(shè)計中,首先對驅(qū)動橋的特點(diǎn)進(jìn)行了說明,根據(jù)給定的數(shù)據(jù)確定了汽車的總體參數(shù),再確定主減速器、差速器、半軸和橋殼的結(jié)構(gòu)類型及其參數(shù),并對強(qiáng)度進(jìn)行校核。數(shù)據(jù)確定之后,利用CATIA軟件建立三維模型,再利用其自身功能繪制二維工程圖,最后利用ANSYS對驅(qū)動橋殼進(jìn)行有限元分析。
關(guān)鍵詞:驅(qū)動橋;CATIA;ANSYS;有限元分析
Abstract
Drive axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain. Its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance, and it is particularly important for the car. Drive axle should be designed to ensure the best dynamic?and?fuel?economy?on?given?condition
Using double stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. This article referred to the traditional driving axle's design method to carry on the truck driving axle's design. In this design, first part is the introduction of the characteristics of the drive axle, according to the given date to calculate the parameters of the automobile, then confirm the structure types and parameters of the Main reducer, differential mechanism, half shaft and axle housing, then check the strength and life of them. After confirming the parameters, use CATIA to establish 3 dimensional model and 2 dimensional model. Finally use ANSYS to finite element analysis for the axle housing.
Key words: drive axle; CATIA; ANSYS; finite element analysis
目錄
摘要 I
Abstract II
目錄 III
第 1 章 緒論 1
1.1 本課題研究的目的和意義 1
1.2 國內(nèi)外研究現(xiàn)狀概述 2
1.3 主要研究內(nèi)容 3
第 2 章 驅(qū)動橋設(shè)計 4
2.1 主減速器設(shè)計 4
2.1.1 主減速器的結(jié)構(gòu)形式 4
2.1.2 主減速器錐齒輪設(shè)計 6
2.1.3 主減速器斜齒圓柱齒設(shè)計 15
2.2 差速器設(shè)計 18
2.2.1 對稱錐齒輪式差速器的工作原理 18
2.2.2 對稱圓錐行星齒輪式差速器的結(jié)構(gòu) 19
2.2.3 對稱圓錐行星齒輪式差速器的設(shè)計 19
2.3 驅(qū)動半軸設(shè)計 24
2.3.1 結(jié)構(gòu)形式分析 24
2.3.2 全浮式半軸的結(jié)構(gòu)設(shè)計 25
2.3.3 全浮式半軸的強(qiáng)度計算 26
2.3.4 半軸的材料及熱處理 26
2.4 制動器設(shè)計 27
2.4.1 同步附著系數(shù)分析 27
2.4.2 制動器的有關(guān)計算 27
2.4.3 制動器主要零件的結(jié)構(gòu)設(shè)計 32
2.5 驅(qū)動橋殼設(shè)計 34
2.5.1 整體式橋殼的結(jié)構(gòu) 34
2.5.2 橋殼的受力分析與強(qiáng)度計算 34
2.6 小結(jié) 36
第 3 章 CATIA三維建模 37
3.1 CATIA軟件介紹 37
3.2 主減速器建模 37
3.3 差速器建模 37
3.4 驅(qū)動半軸建模 37
3.5 驅(qū)動橋殼建模 40
3.6 驅(qū)動橋整體三維建模 40
3.7 小結(jié) 42
第 4 章 驅(qū)動橋殼有限元分析 43
4.1 驅(qū)動橋殼的約束及受力分析 43
4.2 計算方法的局限性 43
4.3 有限元模型的建立 43
4.4 材料屬性及網(wǎng)格劃分 44
4.5 驅(qū)動橋殼的靜強(qiáng)度分析 45
4.5.1 引言 45
4.5.2 最大垂向力工況 45
4.5.3 最大牽引力工況 47
4.5.4 最大制動力工況 50
4.6 小結(jié) 52
結(jié)論 53
致謝 54
參考文獻(xiàn) 55
某商用車雙速主減速器驅(qū)動橋設(shè)計 I
摘 要 I
I
- -
第 1 章 緒論
1.1 本課題研究的目的和意義
驅(qū)動橋位于汽車結(jié)構(gòu)傳動系的末端,用來增大由傳動軸或直接由變速器傳來的轉(zhuǎn)矩,并將轉(zhuǎn)矩分配給左、右驅(qū)動車輪,并使車輪具有汽車行駛運(yùn)動學(xué)所要求的差速功能;同時,驅(qū)動橋還要承受作用于路面和車架或車廂之間的鉛垂力、縱向力和橫向力[1]。在一般的汽車結(jié)構(gòu)中,驅(qū)動橋包括主減速器(又稱主傳動器)、差速器、驅(qū)動車輪的傳動裝置及橋殼等部件[2]。
驅(qū)動橋的類型主要有斷開式驅(qū)動橋和非斷開式驅(qū)動橋兩種。驅(qū)動車輪采用獨(dú)立懸架時,應(yīng)選用斷開式驅(qū)動橋;驅(qū)動橋才贏非獨(dú)立懸架時,應(yīng)采用非斷開式驅(qū)動橋。
由于本次設(shè)計是基于CA141型汽車進(jìn)行的設(shè)計,故需要對商用車的使用需求進(jìn)行一定說明:對于商用車來說,要傳遞的轉(zhuǎn)矩較乘用車和客車都要大得多,以便能夠以較低的成本獲得更高的工作能力,所以選擇功率較大的發(fā)動機(jī),這就對傳動系統(tǒng)有較高的要求,而驅(qū)動橋在傳動系統(tǒng)中起著舉足輕重的作用[3]。隨著目前國際上石油價格的上漲,貨車的經(jīng)濟(jì)性日益成為人們關(guān)心的話題,這不僅僅只對貨車,對于汽車和其他工程機(jī)械,提高其燃油經(jīng)濟(jì)性也是各貨車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶。為了降低油耗,不僅要在發(fā)動機(jī)的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。這就必須在發(fā)動機(jī)的動力輸出之后,在從發(fā)動機(jī)—傳動軸—驅(qū)動橋這一動力輸送環(huán)節(jié)中尋找減少能量在傳遞的過程中的損失。在這一環(huán)節(jié)中,發(fā)動機(jī)是動力的輸出者,也是整個機(jī)器的心臟,而驅(qū)動橋則是將動力轉(zhuǎn)化為能量的最終執(zhí)行者。因此,在發(fā)動機(jī)相同的情況下,采用性能優(yōu)良且與發(fā)動機(jī)匹配性比較高的驅(qū)動橋便成了有效節(jié)油的措施之一。
隨著AutoCAD、CATIA、ANSYS等計算機(jī)軟件的廣泛運(yùn)用,在驅(qū)動橋的生產(chǎn)制造和工作過程中,廣泛的用到了計算機(jī)輔助設(shè)計CAD技術(shù)和計算機(jī)輔助工程CAE技術(shù)。把有限元法、優(yōu)化設(shè)計、疲勞累積損傷理論等應(yīng)用到驅(qū)動橋設(shè)計當(dāng)中后,不但節(jié)省了大量人力和時間,而且可以獲得技術(shù)、經(jīng)濟(jì)最佳的設(shè)計,大大提高了設(shè)計效率、縮短了設(shè)計周期[4]。
1.2 國內(nèi)外研究現(xiàn)狀概述
汽車和汽車工業(yè)在國民經(jīng)濟(jì)、現(xiàn)代社會及人民生活中具有十分重要的作用。近年來汽車工業(yè)在中國機(jī)械工業(yè)各行業(yè)中,其增長速度雖有所回落,但相對比其它行業(yè)仍處于較高水平。但中國汽車業(yè)的發(fā)展仍然遠(yuǎn)遠(yuǎn)趕不上需求。以驅(qū)動橋?yàn)槔?,雖然驅(qū)動橋的設(shè)計和制造工藝都在日益完善,但驅(qū)動橋產(chǎn)品設(shè)計和研究方面距離仍然很大,這方面應(yīng)該為中國的許多部門和企業(yè)所認(rèn)識。目前,我國的驅(qū)動橋設(shè)計,基本上尚處在類比設(shè)計和經(jīng)驗(yàn)設(shè)計階段,這樣的設(shè)計往往偏于保守而限制了驅(qū)動橋性能的提高和產(chǎn)品成本的降低。在現(xiàn)代驅(qū)動橋設(shè)計中,要使其做到盡可能的輕量化不但可以節(jié)省材料消耗和降低成本,而且可以合理的規(guī)劃汽車簧上簧下質(zhì)量、降低動載和提高汽車的平順性[5-6]。?
汽車驅(qū)動橋是汽車的重要總成,它的性能好壞直接影響整車性能,而對于重型卡車尤為重要,當(dāng)采用大功率發(fā)動機(jī)輸出大的轉(zhuǎn)矩以滿足目前重型卡車的快速、重載的高效率、高效益的需要時,必須要搭配一個高效、可靠的驅(qū)動橋。
對于中重型載貨汽車來說,由于需要選擇功率較大的發(fā)動機(jī),這就對傳動系統(tǒng)有較高的要求,而驅(qū)動橋在傳動系統(tǒng)中起著舉足輕重的作用。隨著目前國際上石油價格的上漲,汽車的經(jīng)濟(jì)性日益成為人們關(guān)心的話題,這不僅僅對乘用車,對于載貨汽車,提高其燃油經(jīng)濟(jì)性也是各商用車生產(chǎn)商來提高其產(chǎn)品市場競爭力的一個法寶,因?yàn)橹兄匦洼d貨汽車所采用的發(fā)動機(jī)都是大功率,大轉(zhuǎn)矩的,百公里油耗都較高。以解放CA141型卡車為例,其百公里油耗高達(dá)26.5L[7]。為了降低油耗,不僅要在發(fā)動機(jī)的環(huán)節(jié)上節(jié)油,而且也需要從傳動系中減少能量的損失。這就必須在發(fā)動機(jī)的動力輸出之后,在從發(fā)動機(jī)—傳動軸—驅(qū)動橋這一動力輸送環(huán)節(jié)中尋找減少能量在傳遞的過程中的損失。在這一環(huán)節(jié)中,發(fā)動機(jī)是動力的輸出者,也是整個機(jī)器的心臟,而驅(qū)動橋卻是將動力轉(zhuǎn)化為能量的最終執(zhí)行者。因此,在發(fā)動機(jī)相同的情況下,采用性能優(yōu)良且與發(fā)動機(jī)匹配性比較高的驅(qū)動橋便成了有效節(jié)油的措施之一[8]。所以設(shè)計新型的驅(qū)動橋便成為新的課題。?
目前國內(nèi)重型車橋生產(chǎn)企業(yè)也主要集中在中信車橋廠、東風(fēng)襄樊車橋公司、濟(jì)南橋箱廠、漢德車橋公司、重慶紅巖橋廠和安凱車橋廠幾家企業(yè)。這些企業(yè)幾乎占到國內(nèi)重卡車橋90%以上的市場。?
目前國內(nèi)外驅(qū)動橋傳動系統(tǒng)結(jié)構(gòu)設(shè)計出現(xiàn)了一下一些變化:
(1).主要部件和功能向驅(qū)動橋的中部集中
有些廠家開始把主減速器,制動器和行星減速機(jī)構(gòu)等集合在橋的中部,但其優(yōu)點(diǎn)尚待考證
(2).橋殼采用球墨鑄鐵,以提高整橋外觀質(zhì)量
橋殼采用球墨鑄鐵,加工成本低,其鑄造及加工后的外觀質(zhì)量均比現(xiàn)在大多采用的鑄鋼橋有很大的提高
(3).適應(yīng)特種要求的多功能驅(qū)動橋
為適應(yīng)主機(jī)產(chǎn)品的特殊要求,驅(qū)動橋產(chǎn)品供應(yīng)廠家設(shè)法在橋上增加引進(jìn)了一些特殊功能:自動充氣功能、超載報警功能、增添轉(zhuǎn)向油缸功能等,增加了驅(qū)動橋產(chǎn)品的適應(yīng)性[9-11]。
1.3 主要研究內(nèi)容
驅(qū)動橋的結(jié)構(gòu)形式雖然可以各不相同,但在使用中對他們的基本要求卻是一致的,綜合上述,對驅(qū)動橋的基本要求可以歸納為:?
(1).所選擇的主減速比應(yīng)能滿足汽車在給定使用條件下具有最佳的動力性和燃料經(jīng)濟(jì)性。?
(2).差速器在保證左右驅(qū)動車輪能以汽車運(yùn)動學(xué)所要求的差速滾動外并能將轉(zhuǎn)矩平穩(wěn)而連續(xù)不斷(無脈動)的傳遞給左右驅(qū)動車輪。?
(3).當(dāng)左右驅(qū)動車輪與地面的附著系數(shù)不同時,應(yīng)能充分的利用汽車的牽引力。?
(4).能承受和傳遞路面和車架或車廂間的鉛垂力、縱向力和橫向力,以及驅(qū)動時的反作用力矩和制動時的制動力矩。?
(5).驅(qū)動橋各零部件在保證其強(qiáng)度、剛度、可靠性及壽命的前提下應(yīng)力求減小簧下質(zhì)量,以減小不平路面對驅(qū)動橋的沖擊載荷,從而改善汽車的平順性。?
(6).輪廓尺寸不大以便于汽車的總體布置與所要求的驅(qū)動橋離地間隙相適應(yīng)。
(7).齒輪與其他傳動部件工作平穩(wěn),無噪聲。?
(8).驅(qū)動橋總成及其他零部件的設(shè)計應(yīng)能盡量滿足零件的標(biāo)準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的要求。?
(9).在各種載荷和轉(zhuǎn)速工況下有高的傳動效率。?
(10).結(jié)構(gòu)簡單、維修方便,機(jī)件工藝性好,制造容易。
第 2 章 驅(qū)動橋設(shè)計
驅(qū)動橋處于動力傳動系的末端,其基本功用首先是增扭,降速,改變轉(zhuǎn)矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉(zhuǎn)矩,并將動力合理的分配給左、右驅(qū)動輪,其次,驅(qū)動橋還承受作用于路面和車架或車身之間的垂直立、縱向力和橫向力,遺跡制動力矩和反作用力矩等。?
驅(qū)動橋一般由主減速器、差速器、車輪傳動裝置和驅(qū)動橋殼等組成,轉(zhuǎn)向驅(qū)動橋還有等速萬向節(jié)。?
設(shè)計驅(qū)動橋時應(yīng)當(dāng)滿足如下基本要求:?
(1). 選擇適當(dāng)?shù)闹鳒p速比,以保證汽車在給定的條件下具有最佳的動力性
和燃油經(jīng)濟(jì)性。
(2). 外廓尺寸小,保證汽車具有足夠的離地間隙,以滿足通過性的要求。
(3). 齒輪及其它傳動件工作平穩(wěn),噪聲小。
(4). 在各種載荷和轉(zhuǎn)速工況下有較高的傳動效率。
(5). 具有足夠的強(qiáng)度和剛度,以承受和傳遞作用于路面和車架或車身間的
各種力和力矩;在此條件下,盡可能降低質(zhì)量,尤其是簧下質(zhì)量,減少不平路面的沖擊載荷,提高汽車的平順性。
(6). 與懸架導(dǎo)向機(jī)構(gòu)運(yùn)動協(xié)調(diào)。
(7). 結(jié)構(gòu)簡單,加工工藝性好,制造容易,維修,調(diào)整方便。
此次設(shè)計車型(CA141)驅(qū)動橋設(shè)計及強(qiáng)度分析設(shè)計參數(shù):
a) 后輪距:1740mm
b) 車輪滾動半徑:462mm
c) 發(fā)動機(jī)最大扭矩:372N?m,1200~1400 r/min
d) 汽車滿載時一個驅(qū)動橋給水平地面的最大負(fù)荷G2=24593.6N
e) 變速比:i1=7.7
f) 主傳動比:i0=7.63[12]
2.1 主減速器設(shè)計
2.1.1 主減速器的結(jié)構(gòu)形式
主減速器的結(jié)構(gòu)型式,主減速器可根據(jù)齒輪類型,減速形式以及主,從動齒輪的支承形式不同分類。
2.1.1.1 主減速器的齒輪類型
主減速器的齒輪有弧齒錐齒輪,雙曲面齒輪,圓柱齒輪和蝸輪蝸桿等形式。比較幾種齒輪的特點(diǎn),本次設(shè)計選用弧齒錐齒輪傳動。?
弧齒錐齒輪傳動的特點(diǎn)是主從動齒輪的軸線垂直相交于一點(diǎn)。由于輪齒端面重疊的影響,至少有兩對以上的輪齒同時嚙合,因此螺旋錐齒輪能承受大的負(fù)荷,加之其輪齒不是在齒的全長上同時嚙合,面是逐漸地由齒的一端連續(xù)而平穩(wěn)地轉(zhuǎn)向另—端,使得其工作平穩(wěn),即使在高速運(yùn)轉(zhuǎn)時,噪聲和振動也是很小的,但弧齒錐齒輪對嚙合精度很敏感,齒輪副錐頂稍不吻合就會使工作條件急劇變壞,并加劇齒輪的磨損和使噪聲增大。
2.1.1.2 主減速器的減速形式
本設(shè)計采用雙級主減速器進(jìn)行設(shè)計。影響減速形式選擇的因素有汽車類型、實(shí)用條件、驅(qū)動橋處的離地間隙、驅(qū)動橋數(shù)和布置形式以及主傳動比i0。其中,i0的大小影響汽車的動力性和經(jīng)濟(jì)性。
1. 中央主減速器
中央主減速器具有結(jié)構(gòu)簡單,質(zhì)量小,尺寸緊湊,制造成本低等優(yōu)點(diǎn),因而廣泛應(yīng)用于主傳動比i0<7的汽車上。中央主減速器多采用一對弧齒錐齒輪或雙曲面齒輪傳動。中央主減速器的結(jié)構(gòu)形式,尤其是其齒輪的支承形式和拆裝方法,與橋殼的結(jié)構(gòu)形式密切相關(guān)。
2. 雙級主減速器
雙級主減速器的主要結(jié)構(gòu)特點(diǎn)是由兩級齒輪減速組成的主減速器。與單級主減速器相比,雙級主減速器在保證離地間隙相同時可得到大的傳動比,i0一般為7~12;但其尺寸,質(zhì)量均較大,結(jié)構(gòu)復(fù)雜,制造成本也顯著曾加,因此主要應(yīng)用在總質(zhì)量較大的商用車上。
3. 雙速主減速器
雙速主減速器內(nèi)由齒輪的不同組合可獲得兩種傳動比。它與普通變速器相配合,可得到雙倍于變速器的檔位。雙速主減速器的高低檔傳動比,是根據(jù)汽車的使用條件、發(fā)動機(jī)功率及變速器各檔傳動比的大小來選定的。大的主傳動比用于汽車滿載行駛或在困難道路上行駛,以克服較大的行駛阻力并減少變速器中間檔位的變換次數(shù);小的傳動比則用于汽車空載、半載行駛或在良好路面上行駛,以改善汽車的燃油經(jīng)濟(jì)性和提高平均車速。
4. 雙級貫通式主減速器
對于總質(zhì)量較大的多橋驅(qū)動汽車,由于主傳動比較大,多采用雙級貫通式主減速器。根據(jù)齒輪的組合方式不同,可以分為錐齒輪-圓柱齒輪式和圓柱齒輪-錐齒輪式兩種形式。
2.1.1.3 主減速器主、從動錐齒輪的支承方案
圖 21 圖 22 圖 23
懸臂式支承結(jié)構(gòu)簡單,支承剛度較跨置式差,用于傳遞較小轉(zhuǎn)矩的主減速器上。跨置式支承的結(jié)構(gòu)特點(diǎn)是在錐齒輪兩端的軸上均有軸承,這樣可大大增加支撐剛度,又使軸承負(fù)荷減小,齒輪嚙合條件改善,因此齒輪的承載能力高于懸臂式。此外,由于齒輪大端一側(cè)軸頸上的兩個相對安裝的圓錐滾子軸承之間的距離很小,可以縮短主動齒輪軸的長度,使布置更緊湊,并可減小傳動軸夾角,有利于整車布置。但是跨置式支承必須在主減速器殼體上有支承所需的軸承座,使主減速器殼體結(jié)構(gòu)復(fù)雜,加工成本提高。另外,因主從動齒輪之間的空隙很小,致使主動齒輪的導(dǎo)向軸承尺寸受到限制,有時布置不下或拆裝困難。?
綜合比較兩種形式的特點(diǎn),本設(shè)計選用懸臂式支撐方案。
2.1.2 主減速器錐齒輪設(shè)計
2.1.2.1 主減速器齒輪計算載荷的確定
1. 按發(fā)動機(jī)最大轉(zhuǎn)矩和最低檔傳動比確定從動錐齒輪的計算轉(zhuǎn)矩Tce
(2-1)
式中 Tce————計算轉(zhuǎn)矩,N?m
Kd————由于猛接離合器而產(chǎn)生的動載系數(shù),Kd=1
Temax————發(fā)動機(jī)最大轉(zhuǎn)矩;Te max=372 N?m
k————液力變矩器變矩系數(shù),k=1
i1————變速器傳動比,i1=7.7
i0————主減速器傳動比,i0=7.63
η————變速器傳動效率,取η=0.9.
代入公式有=19669.83 N?m
2. 按驅(qū)動輪打滑轉(zhuǎn)矩確定從動錐齒輪的計算轉(zhuǎn)矩Tcs
(2-2)
式中 G2————汽車滿載時一個驅(qū)動橋給水平地面的最大負(fù)荷24593.6N
φ————輪胎對地面的附著系數(shù),此處取0.85
m’2————汽車最大加速度時的后軸負(fù)荷轉(zhuǎn)移系數(shù),此處取1.2
rr————車輪的滾動半徑,為0.462 mm
ηm————主減速器從動錐齒輪到驅(qū)動車輪之間的傳動效率,取0.9
im————主減速器從動錐齒輪到驅(qū)動車輪之間的傳動比,取1.0
=N
2.1.2.2 錐齒輪主要參數(shù)選擇
1. 主、從動錐齒輪齒數(shù)Z1和Z2?
選擇主、從動錐齒輪齒數(shù)時應(yīng)考慮如下因素:
1) 為了磨合均勻,Z1和Z2之間應(yīng)避免有公約數(shù)。
2) 為了得到理想的齒面重合度和高的輪齒彎曲強(qiáng)度,主、從動齒輪齒數(shù)和應(yīng)不小于40
3) 為了嚙合平穩(wěn),噪聲小和具有高的疲勞強(qiáng)度對于乘用車,Z1一般不少于9;對于商用車,Z1一般不少于6?
4) 主傳動比i0較大時,Z1盡量取得小一些,以便得到滿意的離地間隙。
5) 對于不同的主傳動比,Z1和Z2應(yīng)有適宜的搭配。
綜上所述,取Z1=13和Z2?=25。
2. 從動錐齒輪大端分度圓直徑D2和端面模數(shù)ms
對于單級主減速器,增加尺寸D2會影響驅(qū)動橋殼高度尺寸和離地間隙,減小D2又影響跨置式主動齒輪的前支撐座得安裝空間和差速器的安裝。D2可根據(jù)經(jīng)驗(yàn)公式初選,即
(2-3)
式中D2————從動齒輪大端分度圓直徑(mm);?
KD2————直徑系數(shù),一般取13.0~15.3;?
Tc?————從動錐齒輪的計算轉(zhuǎn)矩, [] Tc =min[Tce , Tcs]
故??D2=(13.0~15.3)310257.2(350.92~413.00)mm。初選D2=350.92mm,則mt= D2/Z2=350.92/25=8.93mm?。參考《機(jī)械設(shè)計手冊》選取=mt=?7mm
3. 主、從動錐齒輪齒面寬b1、b2
對于從動齒輪的齒面寬b2,推薦不大于其節(jié)錐距A0的0.3倍,而且b2應(yīng)滿足b2≤10m,一般也推薦b2=0.155D2。對于弧齒錐齒輪,b1一般比b2大10%。
b2=0.155D2 =0.155×322=49.91mm。
b2取50mm,b1取55mm。
4. 中點(diǎn)螺旋角β
螺旋角沿齒寬是變化的,齒輪打斷的螺旋角最大,輪齒小段的螺旋角最小?;↓X錐齒輪副的重點(diǎn)螺旋角是相等的。?
同時嚙合的齒數(shù)越多,傳動就越平穩(wěn),噪聲越低,而且齒輪的強(qiáng)度越高。汽車主減速器弧齒錐齒輪的平均螺旋角為35°~40°,而商用車選用較小的β值以防止軸向力過大,通常取35°。
5. 螺旋方向
從錐齒輪錐頂看,齒形從中心線上半部向左傾斜為左旋,向右傾斜為右旋。主、從動錐齒輪的螺旋方向是相反的。螺旋方向與錐齒輪的螺旋方向影響其受軸向力的方向。當(dāng)變速器掛前進(jìn)擋時,應(yīng)使主動齒輪的軸向力離開錐頂方向,這樣可使主、從動齒輪有分離趨勢,防止齒輪因卡死而損壞。
6. 法向壓力角
法向壓力角大一些可以增加輪齒強(qiáng)度,減小齒輪不發(fā)生根切的最小齒數(shù)。對于弧齒錐齒輪,乘用車的α一般選用14.5°或16°,商用車的α為20°或22.5°,這里取α=20°。
2.1.2.3 主減速器圓弧錐齒輪的幾何尺寸計算
主減速器圓弧錐齒輪各項(xiàng)重要參數(shù)的計算公式及其計算結(jié)果如表2-1所示。
表格 21主減速器圓弧齒螺旋錐齒輪的幾何尺寸計算用表
項(xiàng)目
計算公式
計算結(jié)果
主動齒輪齒數(shù)
Z1
13
從動齒輪齒數(shù)
Z2
25
端面模數(shù)
m
9 mm
齒面寬
b
b1=44 mm,b2=40 mm
工作齒高
hg=2ha*m
hg=14 mm
續(xù)表 21主減速器圓弧齒螺旋錐齒輪的幾何尺寸計算用表
全齒高
h=(2ha*+c*)m
h=16.99 mm
法向壓力角
α
α=20°
軸交角
∑=90
∑=90
節(jié)圓直徑
d=mZ
d1=99mm ,d2=225mm
節(jié)錐角
γ1=tan-1(Z1Z2)
γ1=27.47°
節(jié)錐角
γ2=90°-γ1
γ2=62.53°
節(jié)錐距
A0=d12sinγ1=d212sinγ2
取A0=126.8 mm
周節(jié)
t=3.1416m
t=21.99 mm
齒頂高
ha=ha*m
ha=10.26 mm ,5.4 mm
齒根高
hf=(ha*+c*)m
hf=8.75 mm
徑向間隙
c=c*m
c=1.75 mm
齒根角
θf=tan-1hfA0
θf=3.09°
面錐角
γa1=γ1+θf1
γa1=11.79°
面錐角
γa2=γ2+θf2
γa2=84.39°
根錐角
γf1=γ1-θf1
γf1=5.61°
根錐角
γf2=γ2-θf2
γf2=78.21°
齒頂圓直徑
da1=d1+2ha1cosγ1
da1=135.21mm
齒頂圓直徑
da2=d2+2ha2cosγ2
da2=229.5 mm
理論弧齒厚
s1=t-s2 , s2=Skm
s1=15.88mm ,s2=6.10mm
齒側(cè)間隙
查表得
0.18mm
2.1.2.4 主減速器圓弧錐齒輪的強(qiáng)度計算
1. 單位齒長圓周力
主減速器錐齒輪的表面耐磨性,可用齒輪上的單位齒長圓周力估算,即
式中 P————作用在圓周上的齒輪力,按發(fā)動機(jī)最大轉(zhuǎn)矩和最大附著力矩兩種載荷工況進(jìn)行計算
F————作用在齒輪上的圓周力
b2————從動齒輪的齒面寬,在此取50mm
1) 按發(fā)動機(jī)最大轉(zhuǎn)矩計算:
(2-4)
式中:ig————變速器傳動比,7.7;
D1————主動錐齒輪分度圓直徑:D1=Z1ms=99 mm;
Te max————發(fā)動機(jī)最大轉(zhuǎn)矩,在此取372 N?m;
按式(2-4) =925.6 N/mm
P=925.6 N/mm < [P]=1429 N/mm ,校核滿足要求。
2) 按最大附著力矩計算:
(2-5)
式中 G2————后驅(qū)動橋在滿載狀態(tài)下的靜載荷,在此取18666.7 N;
m2————汽車最大加速度時的后軸負(fù)荷轉(zhuǎn)移系數(shù),在此取1.2;
————輪胎與路面之間的附著系數(shù),在此取0.85;
rr————車輪滾動半徑,在此取0.462 mm;
im————主減速器從動齒輪到車輪間的傳動比,在此取1;
ηm————主減速器從動齒輪到車輪間的傳動效率,在此取0.9;
將各參數(shù)代入上式得:P=1124.6 MPa < [P]=1429 MPa
齒輪表面耐磨性合格。
2. 齒輪彎曲強(qiáng)度
錐齒輪輪齒的齒根彎曲應(yīng)力:
(2-6)
式中 Tc————齒輪的計算轉(zhuǎn)矩,主動齒輪取T=933.3 N?m;
k0————過載系數(shù),一般取1;
ks————尺寸系數(shù),0.697;
km————齒面載荷分配系數(shù),取1.1;
kv————質(zhì)量系數(shù),取1;
b————所計算的齒輪齒面寬,b1=44 mm , b2=40 mm ;
D————齒輪大端分度圓直徑,D1=99 mm ,D2=225 mm ;
JW————齒輪的輪齒彎曲應(yīng)力綜合系數(shù),小齒輪取0.27,大齒輪取0.25;
將上述各系數(shù)代入后得:
=465.25MPa < [σw]=700MPa
故齒輪彎曲強(qiáng)度滿足要求。
3. 齒輪接觸強(qiáng)度
錐齒輪輪齒的齒面接觸應(yīng)力為:
(2-7)
式中 σJ————錐齒輪輪齒的齒面接觸應(yīng)力;
CP————綜合彈性系數(shù),取232.6 N1/2/mm;
D1————主動錐齒輪大端分度圓直徑,99 mm;
b————主從動錐齒輪齒面寬較小值,40 mm;
ks————尺寸系數(shù),此處取1.0;
TZ————主動錐齒輪計算轉(zhuǎn)矩,5898.25 N?m;
kf————齒面品質(zhì)系數(shù),此處取1.0;
JJ————齒面接觸強(qiáng)度的綜合系數(shù),查表可得此處應(yīng)取0.229;
將各參數(shù)代入公式可計算得:
=2245.09MPa
σJ<[σJ]=2800MPa,故齒輪接觸強(qiáng)度滿足要求。
2.1.2.5 主減速器錐齒輪的載荷計算
錐齒輪在工作過程中,互相嚙合的齒面上作用有一法向力。該法向力可以分解為沿齒輪切線方向的圓周力、沿齒輪軸線方向的軸向力以及垂直于齒輪軸線的徑向力。
1) 錐齒輪齒面上的作用力
齒寬中點(diǎn)處的圓周力為
(2-8)
式中 T————作用在該齒輪上的轉(zhuǎn)矩
Dm2————該齒輪的齒面寬中點(diǎn)處的分度圓直徑
將各參數(shù)代入公式可計算得:
=10.21kN
2) 錐齒輪的軸向力和徑向力
圖 24 主動錐齒輪齒面受力圖
如圖 2-4所示,主動錐齒輪螺旋方向?yàn)樽笮?,旋轉(zhuǎn)方向?yàn)槟鏁r針,F(xiàn)T為作用在節(jié)錐面上的齒面寬中點(diǎn)P處的法向力,在P點(diǎn)處的螺旋方向的法平面內(nèi),F(xiàn)T分解為兩個相互垂直的力FN和Ff。Ff又可以分解為沿切線方向的圓周力F和沿節(jié)圓母線方向的力FS。F和Ff之間的夾角為螺旋角β,F(xiàn)T和Ff之間的夾角為法向壓力角α。這樣有:
(2-9)
(2-10)
(2-11)
于是,作用在主動錐齒輪齒面上的軸向力Faz和徑向力FRz分別為:
(2-12)
(2-13)
由上式可計算出:
Faz=-6124.88N
Faz=5953.6N
作用在從動錐齒輪齒面上的軸向力Fac和徑向力FRc分別為:
(2-14)
(2-15)
由上式可計算出:
Faz=7995.08N,F(xiàn)az=3006.38N
3) 主減速器錐齒輪軸承載荷計算
對于主動齒輪采用懸臂式支承,對于從動齒輪采用傳統(tǒng)的騎馬式支承方式[13]。對于采用采用騎馬式的主動錐齒輪和從動錐齒輪的軸承徑向載荷,軸承的徑向載荷分別為:
(2-16)
(2-17)
求得FaZ=-6124.88N,F(xiàn)RZ=5953.6N,a=67mm,b=41mm,c=63mm,d=125mm。故
軸承的徑向力分別為:
=8396.2N
其軸向力為0。
=12673.43N
其軸向力為0。
a) 對于軸承A
采用圓柱滾子軸承,采用3020E,此軸承的額定動載荷Cr為32.2KN,所承受的當(dāng)量動載荷Q=X?RA。取X=1,則Q= RA=8396.2N。
(2-18)
式中 ff————溫度系數(shù),取1.0
fp————載荷系數(shù),取1.2
=4.81×108
對于無輪邊減速器的驅(qū)動橋來說,主減速器的從動齒輪軸承的計算轉(zhuǎn)矩n2為262.45r/min。則主動齒輪的計算轉(zhuǎn)矩為
n1=7.63×262.45=2002.49 r/min
故軸承能正常工作的額定壽命為
=5861.5h
若汽車大修里程定為10000公里,可計算出預(yù)期壽命為
=2702.7h
由于Lh> Lh’,故軸承符合使用要求。
b) 對于軸承B
對于成對安裝的軸承組的計算當(dāng)量載荷時徑向動載荷系數(shù)X和軸向動載荷系數(shù)Y值按雙列軸承選用,e值與單列軸承相同。在此選用30205型軸承,在此的額定動載荷Cr為32.2kN。
派生軸向力:
=3064.53N
軸向載荷:
A=A1-S1=19548.75-3960.44=15588.32N
>e
故X=0.4,Y=1.6
Q=fd(XR+YA) fd:沖擊載荷系數(shù),取1.2
Q=fd(XR+YA)=1.2×(0.4×12673.43+1.6V15588.32)=30372.8N
=5376.58h
由于Lh> Lh’,故軸承符合使用要求。
3)對于軸承C、D
選用圓錐滾子軸承,選用30211,軸承的額定動載荷為86.5KN,經(jīng)過校核,符合使用要求。
2.1.3 主減速器斜齒圓柱齒設(shè)計
2.1.3.1斜齒圓柱齒輪主要參數(shù)的選擇
1.主、從動齒輪的齒數(shù)Z21和Z22
二級齒輪副的傳動比為i02=2.985,根據(jù)機(jī)械設(shè)計手冊,初選主動齒輪齒數(shù)為Z21=14,Z22=43,則i02=Z22/Z21=3.07。
i02/i01=1.597,在1.4~2.0之間,且14與43無公約數(shù),故符合要求。
2.法向模數(shù)mn
選用推薦模數(shù)mn=6。
3.法向壓力角αn和螺旋角β
取法向壓力角αn=20°,β的推薦值一般為15°~20°,故初選β=15°。
4.主、從動齒輪的節(jié)圓直徑d21和d22
由表2-1中公式可得,d21=87mm,d22=265mm。
5.齒寬b
齒寬的計算公式為
b1=Φdd21
式中,Φd為齒寬系數(shù),取0.85;d21為小齒輪分度圓直徑,87mm;則
b1=0.85×87=74.32,圓整為75mm。
根據(jù)經(jīng)驗(yàn)公式,b2=b1-5=75-5=70mm。
故b1為75mm,b2=70mm。
2.1.3.2斜齒圓柱齒輪的幾何尺寸計算
斜齒圓柱齒輪的幾何尺寸計算見表3-2。
2.1.3.1圓柱齒輪的損壞形式
圓柱齒輪的損壞形式主要有:輪齒折斷、齒面疲勞剝落(點(diǎn)蝕)、齒面膠合、齒面磨損等。
輪齒折斷發(fā)生在下述幾種情況下:輪齒受到足夠大的沖擊載荷作用,造成輪齒彎曲折斷;輪齒在重復(fù)載荷作用下,齒根產(chǎn)生疲勞裂紋,裂紋擴(kuò)展深度逐漸加大,然后出現(xiàn)彎曲折斷。
輪齒工作時,一對齒輪相互嚙合,齒面相互擠壓,這是存在于齒面細(xì)小裂縫中的潤滑油油壓升高,并導(dǎo)致裂縫擴(kuò)展,然后齒面表層出現(xiàn)塊狀剝落而形成小麻點(diǎn),稱之為齒面點(diǎn)蝕。它使齒形誤差加大,產(chǎn)生動載荷,并可能導(dǎo)致輪齒折斷。
表3-2 斜齒圓柱齒輪的幾何尺寸
序號
名稱
代號
小齒輪
大齒輪
計算結(jié)果
1
齒數(shù)比
u
u=z21/z22,按傳動要求確定
3.07
2
分度圓直徑
de
d21=87mm
d22=265mm
3
齒數(shù)
z
設(shè)計值
設(shè)計值
z21=14,z22=43
4
法向模數(shù)
mn
推薦值
6
5
法向壓力角
α
推薦值
20°
6
螺旋角
β
推薦值一般為15°~20°
15°
7
齒寬系數(shù)
Φd
一般取0.85
0.85
8
齒寬
b
b1=Φdd21
b2=b1-5
b1=75mm
b2=70mm
9
齒距
p
p=πmn
18.84mm
10
齒頂高
ha
ha=han*mn han*=1
6mm
11
齒根高
hf
hf=cn*mn
7.5mm
12
齒全高
h
h=ha+hf
13.5mm
13
中心距
a
a=1/2(d1+d2) 可圓整
176mm
14
齒頂圓直徑
da
da=d+2ha
da1=99mm,da2=277mm
15
齒根圓直徑
df
df=d-2hf
df1=72mm,df2=250mm
負(fù)荷大、齒面相對滑動速度又高的齒輪,在接觸壓力大且接觸處產(chǎn)生高溫作用的情況下使齒面間的潤滑油膜破壞,導(dǎo)致齒面直接接觸,在局部高溫、高壓作用下齒面互相熔焊粘連,齒面沿滑動方向形成撕傷痕跡,稱為齒面膠合[14]。
2.1.3.1輪齒強(qiáng)度計算
1. 輪齒彎曲強(qiáng)度計算
斜齒圓柱齒輪的彎曲應(yīng)力為
式中,σw為齒輪的彎曲應(yīng)力;Tg為計算載荷,取Temax=450000N?mm;β為齒輪螺旋角,為15°,Kσ為應(yīng)力集中系數(shù),取1.50;Z為小齒輪齒數(shù),為14;mn為法向模數(shù),為6;y為齒形系數(shù),查得為0.19;Kc為齒寬系數(shù),取8.0;Kε為重合度影響系數(shù),取2.0。許用應(yīng)力對貨車為100~250MPa。則
<100MPa
故符合要求。
2.輪齒接觸強(qiáng)度計算
輪齒接觸應(yīng)力σj
式中,σj為輪齒的接觸應(yīng)力,MPa;F為齒面上的法向力,F(xiàn)=F1/(cosɑcosβ);F1為圓周力,F(xiàn)1=2Tg/d;Tg為計算載荷,為450000N?mm;d為節(jié)圓直徑,mm;ɑ節(jié)點(diǎn)處壓力角,β為齒輪螺旋角;則
E為齒輪材料的彈性模量,為2.1×105MPa;b為齒輪接觸的實(shí)際寬度,為70mm;ρz、ρb為主、從動輪節(jié)點(diǎn)處的曲率半徑;rb、rz為主、從動齒輪節(jié)圓半徑。則對斜齒輪ρz=(rzsinɑ)/cos2β =13.91,ρb=(rbsinɑ)/cos2β =42.725。則
查得其許用應(yīng)力范圍為1300~1400MPa,故符合要求。
2.1.3.1齒輪的材料選擇
二級圓柱斜齒輪多數(shù)采用滲碳合金鋼,其表層的高硬度與心部的高韌性相結(jié)合,能大大提高齒輪的耐磨性及抗彎曲疲勞和接觸疲勞的能力。在選用鋼材及熱處理時,對可加工性及成本也應(yīng)考慮。
國內(nèi)汽車齒輪材料主要采用20CrMnTi、20Mn2TiB、15MnCr5、20MnCr5、25MnCr5、28MnCr5。滲碳齒輪表面硬度為58~63HRC,心部硬度為33~48HRC。
值得指出的是,采取噴丸處理、磨齒、加大齒根圓弧半徑和壓力角等措施,能使齒輪得到強(qiáng)化。對齒輪進(jìn)行強(qiáng)力噴丸處理以后,輪齒產(chǎn)生殘余壓應(yīng)力,齒輪彎曲疲勞壽命可成倍提高,接觸疲勞壽命也有明顯改善。在加大齒根圓弧半徑的同時,進(jìn)行強(qiáng)力噴丸處理,不僅可使殘余壓應(yīng)力進(jìn)一步增加,還改善了應(yīng)力集中。齒輪在熱處理之后進(jìn)行磨齒,能消除齒輪熱處理的變形,經(jīng)過磨齒后,齒輪精度要高于熱處理前剃齒和擠齒齒輪精度,使得傳動平穩(wěn),效率提高,并在同樣負(fù)荷條件下,磨齒的彎曲疲勞壽命比剃齒的要高近一倍[16]。
2.2 差速器設(shè)計
根據(jù)汽車行駛運(yùn)動學(xué)的要求和實(shí)際上的車輪、道路以及他們之間的相互關(guān)系表明:汽車在行駛過程中左右車輪在同一時間內(nèi)所滾過的行程往往是有差別的。例如,轉(zhuǎn)彎時外側(cè)車輪的行程總要比內(nèi)側(cè)的長。另外,即使汽車作直線行駛,也會由于左右車輪在同一時間內(nèi)所滾過的路面垂向波形的不同,或由于左右車輪輪胎氣壓、輪胎負(fù)荷、胎面磨損程度的不同以及制造誤差等原因引起左右車輪外徑不同或滾動半徑不相等而要求車輪行程不等[17]。在左右車輪行程不等的情況下,如果采用一根整體的驅(qū)動車輪軸將動力傳給左右車輪,則會由于左右驅(qū)動車輪的轉(zhuǎn)速雖相等而行程卻又不同的這一運(yùn)動學(xué)上的矛盾,引起某一驅(qū)動車輪產(chǎn)生滑轉(zhuǎn)或滑移。這不僅會是輪胎過早磨損、無益地消耗功率和燃料以及驅(qū)動車輪軸超載等,還會因?yàn)椴荒馨此蟮乃矔r中心轉(zhuǎn)向而使操縱性變壞。此外,由于車輪與路面間尤其在轉(zhuǎn)彎時有大的滑轉(zhuǎn)或滑移,易使汽車在轉(zhuǎn)向時失去抗側(cè)滑能力而使穩(wěn)定性變壞。為了消除由于左右車輪在運(yùn)動學(xué)上的不協(xié)調(diào)而產(chǎn)生的這些弊病,汽車左右驅(qū)動輪間都裝有差速器,后者保證了汽車驅(qū)動橋兩側(cè)車輪在行程不同時具有以不同速度旋轉(zhuǎn)的特性,從而滿足了汽車行駛運(yùn)動學(xué)的要求。在此,選用對稱錐齒輪式差速器。
2.2.1 對稱錐齒輪式差速器的工作原理
其工作原理如圖圖 2-6所示。
ω0為主減速器從動齒輪或差速器殼的角速度;ω1、ω2分別為左右兩半軸的角速度;T0為差速器殼接受的轉(zhuǎn)矩;Tr為差速器的內(nèi)摩擦力矩;T1、T2分別為左右兩半軸對差速器的反轉(zhuǎn)矩。根據(jù)運(yùn)動分析可得?
ω1+ω2=2ω0
顯然,當(dāng)一側(cè)半軸不轉(zhuǎn)時,另一側(cè)半軸將以2倍的差速器殼體角速度旋轉(zhuǎn);當(dāng)差速器殼體不轉(zhuǎn)時,左右半軸將等速、反向旋轉(zhuǎn)。根據(jù)力矩平衡可得?
T1+T2=TT2-T1=Tr
圖 25對稱錐齒輪式差速器的工作原理
普通錐齒輪差速器的鎖緊洗漱k一般為0.05-0.15,兩半軸的轉(zhuǎn)矩比kb為1.11-1.35,這說明左右半軸的轉(zhuǎn)矩差別不大,故可以認(rèn)為分配給兩半軸的轉(zhuǎn)矩大致相等,這樣的分配比例對于在良好路面上行駛的汽車來說是很合適的。當(dāng)汽車越野行駛或在泥濘、冰雪路面上行駛,一側(cè)驅(qū)動車輪與地面的附著系數(shù)很兇時,盡管另一側(cè)車輪與地面有良好的附著,其驅(qū)動轉(zhuǎn)矩也不得不隨附著系數(shù)小的一側(cè)同樣地減小,無法發(fā)揮潛在的牽引力,以致汽車停駛。
2.2.2 對稱圓錐行星齒輪式差速器的結(jié)構(gòu)
普通的對稱式圓錐齒輪差速器由差速器左右殼,兩個半軸齒輪,四個行星齒輪,行星齒輪軸,半軸齒輪墊片及行星齒輪墊片等組成。如圖2-7所示。由于其具有結(jié)構(gòu)簡單、工作平穩(wěn)、制造方便、用于公路汽車上也很可靠等優(yōu)點(diǎn),故廣泛用于各類車輛上。
2.2.3 對稱圓錐行星齒輪式差速器的設(shè)計
1. 差速器齒輪的基本參數(shù)選擇
1) 行星齒輪數(shù)n
CA141為載荷較大的商用車輛,采用4個行星齒輪。
2) 行星齒輪球面半徑RB
圖 26 對稱圓錐行星齒輪式差速器的結(jié)構(gòu)
1,12-軸承;2-螺母;3,14-鎖止墊片;4-差速器左殼;5,13-螺栓;6-半軸齒輪墊片;7-半軸齒輪;8-行星齒輪軸;9-行星齒輪;10-行星齒輪墊片;11-差速器右殼
行星齒輪球面半徑RB反映了差速器錐齒輪節(jié)錐距的大小和承載能力,可根據(jù)經(jīng)驗(yàn)公式來確定。圓錐行星齒輪差速器的結(jié)構(gòu)尺寸,通常取決于行星齒輪的背面的球面半徑
RB,它就是行星齒輪的安裝尺寸,實(shí)際上代表了差速器圓錐齒輪的節(jié)錐距,因此在一定程度上也表征了差速器的強(qiáng)度。?
球面半徑RB可按如下的經(jīng)驗(yàn)公式確定:
RB=KB3T
(2-19)
式中 KB————行星齒輪球面半徑系數(shù),取2.5~3.0,對于有四個行星齒輪的載貨汽車取小值;
T————計算轉(zhuǎn)矩,Tce和Tcs的較小值。
根據(jù)上式,計算得RB=56.5mm。
3) 行星齒輪與半軸齒輪的選擇
為了使齒輪有較高的強(qiáng)度,希望取較大的模數(shù),但尺寸會增大,于是又要求行星齒輪的齒數(shù)盡量少。但一般不少于10。半軸齒輪的齒數(shù)采用14~25,大多數(shù)汽車的半軸齒輪與行星齒輪的齒數(shù)比Z2/Z1在1.5~2.0的范圍內(nèi)。?
在任何圓錐行星齒輪式差速器中,左右兩半軸齒輪的齒數(shù)Z2L,Z2R之和必須能被行星齒輪的數(shù)目所整除,以便行星齒輪能均勻地分布于半軸齒輪的軸線周圍,否則,差速器將無法安裝,即應(yīng)滿足的安裝條件為:
=整數(shù)
式中:Z2L、Z2R————左右半軸齒輪的齒數(shù)。
n————行星齒輪數(shù)。
在此,Z1=10,Z2=18,滿足以上要求。
4) 差速器圓錐齒輪模數(shù)及半軸齒輪節(jié)圓直徑的初步確定
先初步求出行星齒輪與半軸齒輪的節(jié)錐角γ1,γ2
60.945°
再按下式初步求出圓錐齒輪的大端端面模數(shù)m
mm
由于強(qiáng)度的要求,在此取m=4 mm。故,
d1=mZ1=4×10=40mm d2=mZ2=4×18=72mm
5) 壓力角α
汽車差速器的齒輪大豆采用22.5°的壓力角,齒高系數(shù)為0.8的齒形。某些總質(zhì)量較大的商用車采用25°的壓力角,以提高齒輪強(qiáng)度。在此選擇25°的壓力角。
6) 行星齒輪安裝孔的直徑φ及其深度L
行星齒輪的安裝孔直徑φ與行星齒輪軸的名義尺寸相同,而行星齒輪的安裝孔直徑的深度就是行星齒輪在其軸上的支承長度,通常取L=1.1φ。
(2-20)
(2-21)
式中 T0————差速器傳遞的轉(zhuǎn)矩
n————行星齒輪數(shù)
l————行星齒輪支承面中點(diǎn)至錐頂?shù)木嚯x
[σc]————支承面的許用擠壓應(yīng)力
根據(jù)上式:
≈21.41mm L=1.1×21.41=28.07mm
2. 差速器齒輪的幾何計算
行星式差速器設(shè)計所需的各項(xiàng)重要參數(shù)計算公式及其計算結(jié)果見表2-2所示。
表格 22差速器齒輪的幾何計算
行星齒輪數(shù)
Z1≥10,取最小值
Z1=10
半軸齒輪齒數(shù)
Z2=14~25
Z2=18
模數(shù)
m
m=6
齒面寬
b=(0.25~0.30)A0
b=15mm
工作齒高
hg=1.6m
hg=9.6mm
全齒高
h=1.788m+0.051
10.779
壓力角
α
25°
軸交角
∑=90°
∑=90°
節(jié)圓直徑
d1=mz1,d2=mz2
d1=60mm,d2=108mm
節(jié)錐角
γ1=tan-1Z1Z2,γ2=90°-γ1
γ1=29.06,γ2=60.94
節(jié)錐距
A0=d12sinγ1=d122sinγ2
A0= 61.77mm
周節(jié)
t=3.1416m
t=18.849mm
齒頂高
ha1=hg-ha2,ha2=[0.43+0.37(Z2Z1)2]m
ha1=6.33mm, ha2=3.27mm
齒根高
hf1=1.788m-ha1; hf2=1.788m-ha2
hf1=4.398mm;
hf2=7.458mm
徑向間隙
c=h-hg=0.188m+0.051
c=1.179
齒根角
δ1=tan-1hf1A0;
δ1=4.072°
δ2=6.884°
續(xù)表2-3差速器齒輪的幾何計算
δ2=tan-1hf2A0
面錐角
γ01=γ1+δ2;
γ02=γ2+δ1
γ01=35.939°
γ02=65.017°
根錐角
γR1=γ1-δ1
γR2=γ2-δ2
γR1=24.983°
γR2=54.061°
外圓直徑
d01=d1+2ha1cosγ1
d02=d2+2ha2cosγ2
d01=71.067mm
d02=111.176mm
節(jié)圓頂點(diǎn)至外緣距離
χ01=d22-h1sinγ1
χ02=d12-h2sinγ2
χ01=33.95mm
χ02=18.09mm
理論弧齒厚
s1=t-s2
s2=t2-(h1-h2)
s1=9.06mm
s2=3.51mm
齒側(cè)間隙
B=0.102~0.152m
B=0.250mm
弦齒厚
Sχ1=si-si36di12-B2
Sχ1=4.86mm
Sχ2=2.90mm
弦齒高
hχi=hi+si2cosγi4di
hχ1=1.92mm
hχi=1.78mm
3. 差速器齒輪的強(qiáng)度計算
差速器齒輪的尺寸受結(jié)構(gòu)限制,而且承受的載荷較大。它不像主減速器齒輪那樣經(jīng)常處于嚙合狀態(tài),只有當(dāng)汽車轉(zhuǎn)彎或左右輪行駛不同的路程時,或一側(cè)車輪打滑而滑轉(zhuǎn)時,差速器齒輪才能有嚙合傳動的相對運(yùn)動。因此,對于差速器齒輪主要應(yīng)進(jìn)行彎曲強(qiáng)度校核。輪齒彎曲強(qiáng)度σw (MPa)為?
MPa
式中 n————差速器的行星齒輪數(shù);?
J————計算汽車差速器齒輪彎曲應(yīng)力用的綜合系數(shù);
T————差速器一個行星齒輪傳給一個半軸齒輪的轉(zhuǎn)矩;
在此T為854.19?N?m;
Z2————半軸齒輪齒數(shù);
根據(jù)上式有
=612.52MPa<980MPa
所以,差速器齒輪滿足彎曲強(qiáng)度要求。目前用于制造差速器錐齒輪的材料為20CrMnTi、20CrMoTi、20CrMnMo和20CrMo等。由于差速器齒輪要求精度低,所以精鍛差速器齒輪工藝已被廣泛應(yīng)用[18]。
2.3 驅(qū)動半軸設(shè)計
驅(qū)動車輪的傳動裝置位于傳動系的末端,其基本功用是接受從差速器傳來的轉(zhuǎn)矩并將其傳給車輪.對于斷開式驅(qū)動橋和轉(zhuǎn)向驅(qū)動橋,驅(qū)動車輪的傳動裝置為萬向傳動裝置;對于非斷開式驅(qū)動橋,驅(qū)動車輪傳動裝置的主要零件為半軸。半軸根據(jù)其車輪端的支承方式不同,可分為半浮式、3/4浮式和全浮式三種形式。
???? 半浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端支承軸承位于半軸套管外端的內(nèi)孔,車輪裝在半軸上。半浮式半軸除傳遞轉(zhuǎn)矩外,其外端還承受由路面對車輪的反力所引起的全部力和力矩。半浮式半軸結(jié)構(gòu)簡單,所受載荷較大,用于乘用車和總質(zhì)量較小的商用車上。?
???? 3/4浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端僅有一個軸承并裝在驅(qū)動橋殼半軸套管的端部,直接支承著車輪輪轂,而半軸則以其端部凸緣與輪轂用螺釘聯(lián)接。該形式半軸受載情況與半浮式相似,只是載荷有所減輕,一般僅用在乘用車和質(zhì)量較小的商用車上。?
全浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端的凸緣用螺釘與輪轂相聯(lián),而輪轂又借用兩個圓錐滾子軸承支承在驅(qū)動橋殼的半軸套管上。理論上來說,半軸只承受轉(zhuǎn)矩,作用于驅(qū)動輪上的其它反力和彎矩全由橋殼來承受。但由于橋殼變形、輪轂與差速器半軸齒輪不同女、半軸法蘭平面相對其軸線不垂直等因素,會引起半軸的彎曲變形,由此引起的彎曲應(yīng)力一般為5~70MPa[19]。全浮式半軸主要用于質(zhì)量較大的商用車上。
2.3.1 結(jié)構(gòu)形式分析
半軸根據(jù)其車輪端支承方式不同,可分為半浮式,3/4浮式和全浮式。
半軸是差速器與驅(qū)動輪之間傳遞扭矩的實(shí)心軸,其內(nèi)端一般通過花鍵與半軸齒輪連接,外端與輪轂連接。本設(shè)計采用全浮式半軸。?
全浮式半軸只傳遞轉(zhuǎn)矩,不承受任何反力和彎矩,因而廣泛應(yīng)用于各類汽車上。全浮式半軸易于拆裝,只需擰下半軸突緣上的螺栓即可抽出半軸,而車輪與橋殼照樣能支持汽車,從而給汽車維護(hù)帶來方便。??
半浮式半軸既傳遞扭矩又承受全部反力和彎矩。它的支承結(jié)構(gòu)簡單、成本低,因而被廣泛用于反力彎矩較小的各類轎車上。但這種半軸支承拆取麻煩,且汽車行駛中若半軸折斷則易造成車輪飛脫的危險。
全浮式半軸計算載荷的確定
全浮式半軸只承受轉(zhuǎn)矩,其計算轉(zhuǎn)矩可由附著力矩TΨ=X2L?rr= X2R?rr求得,其中X2L,X2R的計算,可根據(jù)以下方法計算,并取兩者的較小值。
若按照最大附著力計算,即
X2L=X2R=
(2-22)
式中 ψ————輪胎與地面的附著系數(shù)取0.8;?
m————汽車加速或減速時的質(zhì)量轉(zhuǎn)移系數(shù),可取1.2~1.4在此取1.2。
根據(jù)上式X2L=X2R=13340N,TΨ=X2L?rr= X2R?rr=6167N?m。
若按照最大轉(zhuǎn)矩計算,即
X2L=X2R=
(2-23
收藏