兒童智力發(fā)展第三個階段-具體運算階段.docx
《兒童智力發(fā)展第三個階段-具體運算階段.docx》由會員分享,可在線閱讀,更多相關(guān)《兒童智力發(fā)展第三個階段-具體運算階段.docx(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
兒童智力發(fā)展第三階段: 具體運算階段(7~11歲) 以兒童出現(xiàn)了內(nèi)化了的、可逆的、有守恒前提的、有邏輯結(jié)構(gòu)的動作為標志,兒童智力進入運算階段,首先是具體運算階段。 說運算是具體的運算意指兒童的思維運算必須有具體的事物支持,有些問題在具體事物幫助下可以順利獲得解決。 皮亞杰舉了這樣的例子:愛迪絲的頭發(fā)比蘇珊淡些,愛迪絲的頭發(fā)比莉莎黑些,問兒童:"三個中誰的頭發(fā)最黑"。這個問題如是以語言的形式出現(xiàn),則具體運算階段兒童難以正確回答。但如果拿來三個頭發(fā)黑白程度不同的布娃,分別命名為愛迪絲、蘇珊和莉莎,按題目的順序兩兩拿出來給兒童看,兒童看過之年,提問者再將布娃娃收藏起來,再讓兒童說誰的頭發(fā)最黑,他們會毫無困難地指出蘇珊的頭發(fā)最黑。 具體運算階段兒童智慧發(fā)展的最重要表現(xiàn)是獲得了守恒性和可逆性的概念。守恒性包括有質(zhì)量守恒、重量守性、對應(yīng)量守恒、面積守恒、體積守恒、長度守恒等等。具體運算階段兒童并不是同時獲得這些守恒的,而是隨著年齡的增長,先是在7-8歲獲得質(zhì)量守恒概念,之后是重量守恒(9-10歲)、體積守恒(11-12歲)。皮亞杰確定質(zhì)量守恒概念達到時作為兒童具體運算階段的開始,而將體積守恒達到時作為具體運算階段的終結(jié)或下一個運算階段(形式運算階段)的開始。這種守恒概念獲得的順序在許多國家對兒童進行的反復(fù)實驗中都得到了驗證,幾乎完全沒有例外。 下面具體介紹幾種典型的守恒實驗: 1、 液體質(zhì)量守恒 把液體從一個高而窄的杯倒向矮而寬的杯中,或從大杯倒向兩小杯中。問兒童大杯和 小杯中的液體是否一樣多?或高窄杯和矮寬杯中的液體是否一樣多?用以觀察兒童理解長5高=寬5矮這一相逆補充關(guān)系的水平。 2、 對應(yīng)量守恒 如上圖所示,杯子與雞蛋是對應(yīng)的關(guān)系,八個杯子旁放著8個雞蛋。兒童知道杯子 和雞蛋的數(shù)目相等。但破壞這種知覺對應(yīng)而把杯子或蛋堆在一起時,再問兒童杯子和雞蛋是否一樣多?或是雞蛋多杯子少、杯子多雞蛋少? 3、 重量守恒先把兩個大小、形狀、重量相同的泥球給兒童看,然后其中一個作成香腸狀,問 兒童;大小、重量是否相同? 4、 長度守恒兩根等長的棍子,先兩頭并齊放置,讓兒童看過之后,改成平行但不并齊放置 問兒童兩根棍子是否等長? 5、 面積守恒 兩個等面積的紙板表草地,有一只牛在上面吃草。草地上蓋有牛舍14間。在一個 紙板上牛舍是建在一起的,而在另一紙板上是散居的。問兒童,分別在兩塊草地的兩頭牛是否可以吃到一樣多的草 6、 積守恒 把一張紙片假定為湖,上面的不同大小的方形是小島,要求兒童在這些不同面積的小島中建筑體積相同的房子。研究兒童是否想到要以高度的增加來補償面積的減少,從而達到體積的守恒(房子一樣多)。 前面所介紹的前運算階段的兒童,雖然動作已經(jīng)有了穩(wěn)定的內(nèi)化,但由于思維缺乏守恒性和可逆性(守恒性與可逆性是幾乎同時形成的),故不能實現(xiàn)了思維的連續(xù)二維集中并得到了可逆性的支持,知覺圖象不再是靜態(tài)的直覺調(diào)節(jié),而是從屬于運算的轉(zhuǎn)換之中,智慧已有了質(zhì)的飛躍,認識在獲得可逆性的同時獲得了守恒性。 因而兒童在具體運算階段的不同年齡可對上述守恒問題做出正確回答。 以上從外在知識角度分析了具體運算階段兒童的智力進步,即以質(zhì)量、長度、面積、重 量、體積守恒的出現(xiàn)為標志,兒童加深了對物世界的認識。 具體運算階段兒童所獲得的智慧成就有以下幾個方面: 1、 在可逆性(互反可逆性)形成的基礎(chǔ)上,借助傳遞性,夠按照事物的某種性質(zhì)如長短、大小、出現(xiàn)的時間先后進行順序排列。例如給孩子一組棍子,長度(從長到短為A、B、C、D……)相差不大。兒童會用系統(tǒng)的方法,先挑出其中最長的,然后依次挑出剩余棍子中最長的,逐步將棍子正確地順序排列(這種順序排列是一種運算能力),即A>B>C>D……。當然孩子不會使用代數(shù)符號表示他的思維,但其能力實質(zhì)是這樣的。 2、 產(chǎn)生了類的認識,獲得了分類和包括的智慧動作。分類是按照某種性質(zhì)來挑選事物,例如他們知道麻雀(用A表示)少于鳥(用B表示),鳥少于動物(C),動物少于生物(D),這即是一種分類包括能力,也是一種運算能力,即A(麻雀)B(鳥) C(動物) D(生物)。 3、 把不同類的事物(互補的或非互補的)進行序列的對應(yīng)。簡單的對應(yīng)形式為一一對應(yīng)。例如給學生編號,一個學生對應(yīng)于一個號,一個號也只能對應(yīng)于一個學生,這便是一一對應(yīng)。較復(fù)雜的對應(yīng)有二重對應(yīng)和多重對應(yīng)。二重對應(yīng)的例子,如一群人可以按膚色而且按國籍分類,每個人就有雙重對應(yīng)。 4、 自我中心觀進一步削弱,即去中心的,在感知運動階段和前運算階段,兒童是以自我為中心的,他以自己為參照系來看待每件事物,他的心理世界是唯一存在的心理世界,這妨礙了兒童客觀地看待外部事物。在具體運算階段,隨著與外部世界的長期相互作用,自我中心逐漸克服。 有研究者曾經(jīng)做過這樣一個實現(xiàn):一個6歲的孩子(前運算階段)和一個8歲的孩子(具體運算階段)一起靠墻坐在一個有四面墻的房間里,墻的四面分別掛在區(qū)別明顯的不同圖案,(A、B、C、D)(見下圖),同時這些圖案被分別完整地拍攝下來制成四張照片(a.b.c.d)。讓兩個兒童先認真看看四面墻的圖案,然后坐好,將四張照片顯示在孩子面前,向兩個兒童,那一張照片顯示的是你所靠坐墻對面的圖案?兩位孩子都困難地正確地答出(a)。這時繼續(xù)問孩子;假設(shè)你靠坐在那面墻坐,這四張照片中的那一張將顯示你所靠坐墻(實際沒有靠坐在那面墻、乃假設(shè))對面的圖案?6歲的前運算階段兒童仍然答的是他實際靠坐墻對面的圖案 片(a),而8歲的具體運算階段兒童指出了正確的圖案照片(c)。為了使6歲的男孩對問題理解無誤,研究者讓8歲男孩坐到對面去,再問6歲孩子;8歲孩子對面的墻的圖案照片是哪一張?6歲孩子仍然選了他自己靠坐墻對面的照片(a)。 概括起來,進入具體運算階段的兒童獲得了較系統(tǒng)的邏輯思維能力,包括思維的可逆性與守恒性;分類、順序排列及對應(yīng)能力,數(shù)的概念在運算水平上掌握(這使空間和時間的測量活動成為可能);自我中心觀削弱等。- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 兒童智力 發(fā)展 三個 階段 具體 運算
鏈接地址:http://m.appdesigncorp.com/p-9264740.html