《(安徽專用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第二章第7課時(shí) 函數(shù)的圖象 課時(shí)闖關(guān)(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(安徽專用)2013年高考數(shù)學(xué)總復(fù)習(xí) 第二章第7課時(shí) 函數(shù)的圖象 課時(shí)闖關(guān)(含解析)(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二章第7課時(shí) 函數(shù)的圖象 課時(shí)闖關(guān)(含答案解析)
一、選擇題
1.當(dāng)a>1時(shí),函數(shù)y=logax和y=(1-a)x的圖象只可能是( )
解析:選B.∵a>1,∴1-a<0,∴y=logax為增函數(shù),y=(1-a)x為減函數(shù).
2.函數(shù)y=ln(1-x)的大致圖象為( )
解析:選C.將函數(shù)y=lnx的圖象關(guān)于y軸對(duì)折,得到y(tǒng)=ln(-x)的圖象,再向右平移1個(gè)單位即得y=ln(1-x)的圖象.故選C.
3.下列函數(shù)的圖象,經(jīng)過平移或翻折后不能與函數(shù)y=log2x的圖象重合的函數(shù)是( )
A.y=2x B.y=logx
C.y=·4x
2、D.y=log2+1
解析:選C.由于y=log2x與y=2x的圖象關(guān)于直線y=x對(duì)稱,二者圖象可以翻折后重合,所以A不正確;y=logx=-log2x與y=log2x的圖象關(guān)于x軸對(duì)稱,顯然也能翻折后重合;函數(shù)y=log2+1=-log2x+1可以看作是由y=log2x的圖象先作關(guān)于x軸對(duì)稱,再向上平移1個(gè)單位得到的,所以A、B、D均可通過平移或翻折后能與函數(shù)y=log2x的圖象重合,只有C不能,故選C.
4.(2012·鄭州調(diào)研)已知下列曲線:
以下為編號(hào)為①②③④的四個(gè)方程:
① -=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.
請(qǐng)按曲線A、B、C、D的順
3、序,依次寫出與之對(duì)應(yīng)的方程的編號(hào)為( )
A.④②①③ B.④①②③
C.①③④② D.①②③④
解析:選A.按圖象逐個(gè)分析,注意x、y的取值范圍.
5.使log2(-x)<x+1成立的x的取值范圍是( )
A.(-1,0) B.[-1,0)
C.(-2,0) D.[-2,0)
解析:選A.在同一坐標(biāo)系內(nèi)作出y=log2(-x),y=x+1的圖象,知滿足條件的x∈(-1,0),故選A.
二、填空題
6.已知函數(shù)f(x)=ax(a>0且a≠1)的圖象上有兩點(diǎn)P(2,y1)與Q(1,y2),若y1-y2=2,則a=________.
解析:y1=a2,y
4、2=a,于是a2-a=2,得a=2(a=-1舍).
答案:2
7.已知函數(shù)y=,將其圖象向左平移a(a>0)個(gè)單位,再向下平移b(b>0)個(gè)單位后圖象過坐標(biāo)原點(diǎn),則ab的值為________.
解析:圖象平移后的函數(shù)解析式為y=-b,由題意知-b=0,∴ab=1.
答案:1
8.設(shè)x1,x2,x3分別是方程x+2x=1,x+2x=2,x+3x=2的根,則x1,x2,x3的大小順序?yàn)開_______.
解析:由條件知,x1,x2,x3可分別作為,圖象交點(diǎn)的橫坐標(biāo),作出它們的圖象如圖所示,即A,B,C交點(diǎn)的橫坐標(biāo),由圖知x1<x3<x2.
答案:x1<x3<x2
三、解答題
5、9. (2012·保定質(zhì)檢)已知函數(shù)
f(x)=
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間.
解:(1)函數(shù)f(x)的圖象如圖所示:
(2)函數(shù)的單調(diào)遞增區(qū)間為[-1,0],[2,5].
10.已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)+,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
解:(1)設(shè)f(x)圖象上任一點(diǎn)P(x,y),則點(diǎn)P關(guān)于(0,1)點(diǎn)的對(duì)稱點(diǎn)P′(-x,2-y)在h(x)的圖象上,
即2-y=-x
6、-+2,
∴y=f(x)=x+(x≠0).
(2)g(x)=f(x)+=x+,
g′(x)=1-.
∵g(x)在(0,2]上為減函數(shù),
∴1-≤0在(0,2]上恒成立,即a+1≥x2在(0,2]上恒成立,∴a+1≥4,
即a≥3,故a的取值范圍是[3,+∞).
11.已知函數(shù)f(x)=|x|(x-a),a>0.
(1)作出函數(shù)f(x)的圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x∈[0,1]時(shí),由圖象寫出f(x)的最小值.
解:(1)f(x)=
其圖象如圖.
(2)由圖知,f(x)的單調(diào)遞增區(qū)間是(-∞,0),;單調(diào)遞減區(qū)間是.
(3)結(jié)合圖象知,當(dāng)>1即a>2時(shí),
所求最小值f(x)min=f(1)=1-a;
當(dāng)0<≤1即0<a≤2時(shí),
所求最小值f(x)min=f=-.
3