《2018年秋九年級數(shù)學上冊 第2章 一元二次方程 2.1 一元二次方程作業(yè) (新版)湘教版》由會員分享,可在線閱讀,更多相關《2018年秋九年級數(shù)學上冊 第2章 一元二次方程 2.1 一元二次方程作業(yè) (新版)湘教版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
2.1 一元二次方程
一、選擇題
1.下列關于x的方程:①ax2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=;④(x-1)(x+2)=1.其中一元二次方程的個數(shù)是( )
A.1 B.2 C.3 D.4
2.關于x的方程ax2-3x+2=x2是一元二次方程,則a的取值范圍為( )
A.a(chǎn)≠0 B.a(chǎn)>0
C.a(chǎn)≠1 D.a(chǎn)>1
3.2017·衡陽中國“一帶一路”倡議給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2015年年人均收入200美元,預計2017年年人均收入將達到1000美元,設2015年到2017年該地區(qū)居民年人均收入
2、平均增長率為x,可列方程為( )
A.200(1+2x)=1000 B.200(1+x)2=1000
C.200(1+x2)=1000 D.200+2x=1000
二、填空題
4.方程2x2=3(x-6)化為一般形式為__________,二次項系數(shù)是________,一次項系數(shù)是________,常數(shù)項是________.
5.當m=________時,方程(m-2)xm2-2+2mx+3=0是關于x的一元二次方程.
三、解答題
6.下列方程是不是一元二次方程?若是,請指出其中的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
(1)x2+1=2x;(2)-2=3x2;(3)x(2x-
3、1)=x;(4)2(x+1)(x-1)=2x2-4x.
7.根據(jù)題意列方程:
(1)剪一塊面積為150 cm2的長方形鐵皮,使它的長比寬多5 cm.設鐵皮的寬為x cm,請列出滿足題意的方程.
(2)一個數(shù)比另一個數(shù)小,且這兩數(shù)之積為6,求這兩個數(shù).設其中較小的一個數(shù)為x,請列出滿足題意的方程.
(3)為了慶祝某節(jié)日,市工會組織籃球比賽,賽制為單循環(huán)形式(每兩隊之間都賽一場),共進行了45場比賽.如果設這次有x支隊參加比賽,列出滿足題意的方程.
(4)如圖K-6-1,等腰直角三
4、角形ABC中,∠B=90°,AB=BC=8 cm,動點P從點A出發(fā)沿AB向點B移動,通過點P引PQ∥AC,PR∥BC,當AP等于多少時,平行四邊形PQCR的面積等于16 cm2?設AP的長為x cm,請列出滿足題意的方程.
圖K-6-1
8、分類討論思想鷹山中學數(shù)學興趣小組對關于x的方程(m+1)xm2+1+(m-2)x-1=0提出了下列問題:
(1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并確定方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項;
(2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.
5、
1.[解析] B?、佼攁=0時,ax2+bx+c=0不是一元二次方程,③x+3=不是整式方程.
2.[解析] C 把已知方程轉化為一般形式,然后根據(jù)一元二次方程的定義進行解答.由原方程,得(a-1)x2-3x+2=0,則依題意得a-1≠0,解得a≠1.故選C.
3.[解析] B 設2015年到2017年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2017年年人均收入為200(1+x)2美元,列出方程為200(1+x)2=1000.故選B.
4.[答案] 2x2-3x+18=0 2 -3 18
5.答案] -2
[解析] 當m2-2=2且m-2≠0,即m=-2時,方程(m-2)
6、xm2-2+2mx+3=0是關于x軸一元二次方程.
6.解:(1)原方程可化為x2-2x+1=0,所以此方程是一元二次方程,其中二次項系數(shù)為1,一次項系數(shù)為-2,常數(shù)項為1.
(2)原方程可化為3x2+2=0,所以此方程是一元二次方程,其中二次項系數(shù)為3,一次項系數(shù)為0,常數(shù)項為2.
(3)原方程可化為2x2-2x=0,所以此方程是一元二次方程,其中二次項系數(shù)為2,一次項系數(shù)為-2,常數(shù)項為0.
(4)原方程可化為4x-2=0,所以此方程不是一元二次方程.
7.解:(1)(x+5)x=150.
(2)x(x+)=6.
(3)x(x-1)=45.
(4)x(8-x)=16.
8
7、、 解:(1)存在m的值,使方程為一元二次方程.
根據(jù)一元二次方程的定義可得
解得m=1,此時方程為2x2-x-1=0,
所以二次項系數(shù)為2,一次項系數(shù)為-1,常數(shù)項為-1.
(2)存在m的值,使方程為一元一次方程.
由題意可知應分以下三種情況:
①當m2+1=1且(m+1)+(m-2)≠0時,解得m=0,
此時方程為-x-1=0,解得x=-1;
②當m2+1=0且m-2≠0時,無解;
③當m+1=0且m-2≠0時,解得m=-1,
此時方程為-3x-1=0,解得x=-.
綜上所述,存在m的值,使方程為一元一次方程.當m=0時,方程的解為x=-1;當m=-1時,方程的解為x=-.
6