《精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第二講 二 綜合法與分析法 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第二講 二 綜合法與分析法 Word版含解析(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
[課時作業(yè)]
[A組 基礎(chǔ)鞏固]
1.設(shè)a,b∈R+,A=+,B=,則A、B的大小關(guān)系是( )
A.A≥B B.A≤B
C.A>B D.AB2.
又A>0,B>0,
∴A>B.
答案:C
2.設(shè)a=,b=-,c=-,那么a,b,c的大小關(guān)系是( )
A.a(chǎn)>b>c B.a(chǎn)>c>b
C.b>a>c D.b>c>a
解析:由已知,可得出a=,b=,c=,
∵+>+>2.
∴b
2、
3.若1<x<10,下面不等式中正確的是( )
A.(lg x)2<lg x2<lg(lg x)
B.lg x2<(lg x)2<lg(lg x)
C.(lg x)2<lg(lg x)<lg x2
D.lg(lg x)<(lg x)2<lg x2
解析:∵1<x<10,∴x2>x,0<lg x<1,
∴l(xiāng)g(lg x)<0,∴l(xiāng)g x2>lg x>(lg x)2,
∴l(xiāng)g x2>(lg x)2>lg(lg x),選D.
答案:D
4.若a,b,c∈R,且ab+bc+ac=1,則下列不等式成立的是( )
A.a(chǎn)2+b2+c2≥2 B.(a+b+c)2≥3
C.++
3、≥2 D.a(chǎn)bc(a+b+c)≤
解析:因?yàn)閍2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,將三式相加,
得2(a2+b2+c2)≥2ab+2bc+2ac,
即a2+b2+c2≥1.
又因?yàn)?a+b+c)2=a2+b2+c2+2ab+2bc+2ac,
所以(a+b+c)2≥1+2×1=3.故選項(xiàng)B成立.
答案:B
5.若a>b>1,P=,Q=(lg a+lg b),R=lg,則( )
A.R
lg b>0,
∴(lg a+lg b)>,即Q>P.
又∵a>b>1,∴>,
∴l(xiāng)
4、g >lg =(lg a+lg b).
即R>Q,∴P3時,-<-,
只需證+<+,
只需證(+)2<(+)2,
即證<,
只需證a(a-3)<(a-1)(a-2),
即證0<2,顯然0<2,
5、
故-<-.
答案:-<-
8.設(shè)a,b,c都是正實(shí)數(shù),a+b+c=1,則++的最大值為________.
解析:因?yàn)?(++)2=a+b+c+2+2+2≤1+(a+b)+(b+c)+(c+a)=1+2(a+b+c)=3,
所以++≤,當(dāng)且僅當(dāng)a=b=c=時等號成立.
答案:
9.用綜合法證明:如果a,b為正數(shù),則ab+++≥4.
證明:由基本不等式ab+≥2=2,
+≥2=2,
有ab+++≥2+2=4,
所以ab+++≥4,
當(dāng)且僅當(dāng)ab=且=,即a=b=1時等號成立.
10.已知a>0,b>0,2c>a+b,用分析法證明c-
6、明ca+b知上式成立.
∴原不等式成立.
[B組 能力提升]
1.已知p:ab>0,q:+≥2,則p與q的關(guān)系是( )
A.p是q的充分而不必要條件
B.p是q的必要而不充分條件
C.p是q的充分必要條件
D.以上答案都不對
解析:若ab>0,則>0,>0,
∴+≥2,故p?q成立.
若+≥2,則≥2,
∴≥0,即≥0.
∵(a-b)2≥0,∴ab>0,故q?p成立.
答案:C
2.已知a、b、c為三角形的三邊
7、,且S=a2+b2+c2,P=ab+bc+ca,則( )
A.S≥2P B.PP D.P≤S<2P
解析:∵a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
∴a2+b2+c2≥ab+bc+ca,即S≥P.
又三角形中|a-b|0在條件a>b>c時恒成立,則λ的取值范圍是________.
解析:不等式可化為+>.
∵a>b>c,
∴a-b>0,b-c>0
8、,a-c>0,
∴λ<+恒成立.
∵+=+
=2++≥2+2=4.
∴λ<4.
答案:(-∞,4)
4.設(shè)a>0,b>0,則此兩式的大小關(guān)系為
lg(1+)________[lg(1+a)+lg(1+b)].
解析:因?yàn)閷?shù)函數(shù)y=lg x為定義域上的增函數(shù).
所以只需比較(1+)與的大小即可,
因?yàn)?1+)2-(1+a)(1+b)
=1+ab+2-(1+ab+a+b)
=2-(a+b).
又由基本不等式得2≤a+b,
所以(1+)2-(1+a)(1+b)≤0,
即有l(wèi)g(1+)≤[lg(1+a)+lg(1+b)].
答案:≤
5.已知a>b>0,求證:<-<
9、.
證明:要證<-<,
只要證b>0,所以>1,<1,
故 <1, >1成立,
所以有<-<成立.
6.已知實(shí)數(shù)a、b、c滿足c 0.
解得-0,
解得c<0或c>(舍去).
∴-