精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析

上傳人:痛*** 文檔編號:76798455 上傳時(shí)間:2022-04-19 格式:DOC 頁數(shù):8 大?。?5.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析_第1頁
第1頁 / 共8頁
精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析_第2頁
第2頁 / 共8頁
精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《精修版數(shù)學(xué)人教A版選修45優(yōu)化練習(xí):第四講 二 用數(shù)學(xué)歸納法證明不等式舉例 Word版含解析(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理 [課時(shí)作業(yè)] [A組 基礎(chǔ)鞏固] 1.用數(shù)學(xué)歸納法證明1+++…+1)時(shí),第一步即證下述哪個(gè)不等式成立(  ) A.1<2       B.1+<2 C.1++<2 D.1+<2 解析:∵n∈N+,且n>1, ∴第一步n=2,左邊=1++,右邊=2, 即1++<2,應(yīng)選C. 答案:C 2.用數(shù)學(xué)歸納法證明不等式1+++…+>成立時(shí),起始值n0至少應(yīng)取(  ) A.7 B.8 C.9 D.10 解析:1+++++…+=, n-1=6,n=7,故n0=8.

2、 答案:B 3.用數(shù)學(xué)歸納法證明 “Sn=+++…+>1(n∈N+)”時(shí),S1等于(  ) A. B. C. + D.++ 解析:因?yàn)镾1的首項(xiàng)為=,末項(xiàng)為=,所以S1=++,故選D. 答案:D 4.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),有f(k)滿足:當(dāng)“f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”.那么下列命題總成立的是(  ) A.若f(3)≥9成立,則當(dāng)k≥1時(shí),均有f(k)≥k2成立 B.若f(5)≥25成立,則當(dāng)k<5時(shí),均有f(k)≥k2成立 C.若f(7)<49成立,則當(dāng)k≥8時(shí),均有f(k)

3、4時(shí),均有f(k)≥k2成立 解析:由題意設(shè)f(x)滿足:“當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立”.因此,對于A,k=1,2時(shí)不一定成立.對于B,C顯然錯(cuò)誤.對于D,因?yàn)閒(4)=25>42,因此對于任意的k≥4,均有f(k)≥k2成立. 答案:D 5.某個(gè)命題與正整數(shù)n有關(guān),如果當(dāng)n=k(k∈N+)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí),命題也成立.現(xiàn)已知當(dāng)n=5時(shí)該命題不成立,那么可推得(  ) A.當(dāng)n=6時(shí)該命題不成立 B.當(dāng)n=6時(shí)該命題成立 C.當(dāng)n=4時(shí)該命題不成立 D.當(dāng)n=4時(shí)該命題成立 解析:與“如果當(dāng)n=k(k∈N+)時(shí)命題成立,那

4、么可推得當(dāng)n=k+1時(shí)命題也成立”等價(jià)的命題為“如果當(dāng)n=k+1時(shí)命題不成立,則當(dāng)n=k(k∈N+)時(shí),命題也不成立”.故知當(dāng)n=5時(shí),該命題不成立,可推得當(dāng)n=4時(shí)該命題不成立,故選C. 答案:C 6.觀察下列式子:1+<,1++<,1+++<,…,可歸納出一般性結(jié)論:________. 解析:由題意得1+++…+<(n∈N+). 答案:1+++…+<(n∈N+) 7.用數(shù)學(xué)歸納法證明+cos α+cos 3α+…+cos(2n-1)α=(k∈N+,a≠kπ,n∈N+),在驗(yàn)證n=1時(shí),左邊計(jì)算所得的項(xiàng)是________. 答案:+cos α 8.用數(shù)學(xué)歸納法證明:2n+1≥n

5、2+n+2(n∈N+)時(shí),第一步應(yīng)驗(yàn)證________. 答案:n=1時(shí),22≥12+1+2,即4=4 9.證明不等式:1+++…+<2(n∈N+ ). 證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=2,不等式成立. (2)假設(shè)當(dāng)n=k(k≥1)時(shí),命題成立,即 1+++…+<2(k∈N+). 當(dāng)n=k+1時(shí),左邊=1+++…++<2+=, 現(xiàn)在只需證明<2, 即證:2<2k+1, 兩邊平方,整理得0<1,顯然成立. ∴<2成立. 即1+++…++<2成立. ∴當(dāng)n=k+1時(shí),不等式成立. 由(1)(2)知,對于任何正整數(shù)n原不等式都成立. 10.設(shè)Sn=+++…+(n∈

6、N+),設(shè)計(jì)算S1,S2,S3,并猜想Sn的表達(dá)式,然后用數(shù)學(xué)歸納法給出證明. 解析:∵S1===, S2=+==, S3=++==, …… 猜想Sn=(n∈N+). 下面用數(shù)學(xué)歸納法證明: (1)當(dāng)n=1時(shí),左邊S1==,右邊==,等式成立. (2)假設(shè)n=k(k≥1,k∈N+)時(shí)等式成立,即 +++…+=, 則當(dāng)n=k+1時(shí), +++…++=+ ===, 這就是說, 當(dāng)n=k+1時(shí),等式成立. 由(1)(2)可知, 等式Sn=對n∈N+都成立. [B組 能力提升] 1.觀察下列不等式:1>,1++>1,1+++…+>,1+++…+>2, 1+++…+>

7、,…,由此猜測第n(n∈N+)個(gè)不等式為(  ) A.1+++…+> B.1+++…+> C.1+++…+> D.1+++…+> 解析:∵1,3,7,15,31,…的通項(xiàng)公式為an=2n-1, ∴不等式左邊應(yīng)是1+++…+. ∵,1,,2,,…的通項(xiàng)公式為bn=, ∴不等式右邊應(yīng)是. 答案:C 2.用數(shù)學(xué)歸納法證明不等式“++…+>(n>2,n∈N+)”時(shí)的過程中,由n=k到n=k+1時(shí),不等式的左邊(  ) A.增加了一項(xiàng) B.增加了兩項(xiàng), C.增加了兩項(xiàng),,又減少了一項(xiàng) D.增加了一項(xiàng),又減少了一項(xiàng) 解析:當(dāng)n=k時(shí),左邊=++…+. 當(dāng)n=k+1時(shí),左邊=

8、++…+=++…+++. 故由n=k到n=k+1時(shí),不等式的左邊增加了兩項(xiàng),又減少了一項(xiàng). 答案:C 3.用數(shù)學(xué)歸納法證明某不等式,其中證n=k+1時(shí)不等式成立的關(guān)鍵一步是:+>+(  )>,括號中應(yīng)填的式子是________. 解析:由>k+2,聯(lián)系不等式的形式可知,應(yīng)填k+2. 答案:k+2 4.設(shè)a,b均為正實(shí)數(shù),n∈N+,已知M=(a+b)n,N=an+nan-1b,則M,N的大小關(guān)系為________(提示:利用貝努利不等式,令x=). 解析:令x=,∵M(jìn)=(a+b)n,N=an+nan-1b, ∴=(1+x)n,=1+nx. ∵a>0,b>0,∴x>0. 由貝努

9、利不等式得(1+x)n>1+nx. ∴>,∴M>N 答案:M>N 5.對于一切正整數(shù)n,先猜出使tn>n2成立的最小的正整數(shù)t,然后用數(shù)學(xué)歸納法證明,并再證明不等式:n(n+1)·>lg(1·2·3·…·n). 證明:猜想當(dāng)t=3時(shí),對一切正整數(shù)n使3n>n2成立.下面用數(shù)學(xué)歸納法進(jìn)行證明. 當(dāng)n=1時(shí),31=3>1=12,命題成立. 假設(shè)n=k(k≥1,k∈N+)時(shí),3k>k2成立, 則有3k≥k2+1. 對n=k+1,3k+1=3·3k=3k+2·3k >k2+2(k2+1)>3k2+1. ∵(3k2+1)-(k+1)2 =2k2-2k=2k(k-1)≥0, ∴3k

10、+1>(k+1)2, ∴對n=k+1,命題成立. 由上知,當(dāng)t=3時(shí),對一切n∈N+,命題都成立. 再用數(shù)學(xué)歸納法證明: n(n+1)·>lg(1·2·3·…·n). 當(dāng)n=1時(shí),1×(1+1)×=>0=lg 1,命題成立. 假設(shè)n=k(k≥1,k∈N+)時(shí), k·(k+1)·>lg(1·2·3·…·k)成立. 當(dāng)n=k+1時(shí),(k+1)·(k+2)· =k(k+1)·+2(k+1)· >lg(1·2·3·…·k)+lg 3k+1 >lg(1·2·3·…·k)+lg(k+1)2 =lg[1·2·3·…·k·(k+1)],命題成立. 由上可知,對一切正整數(shù)n,命題成立.

11、 6.已知等比數(shù)列{an}的首項(xiàng)a1=2,公比q=3,Sn是它的前n項(xiàng)和. 求證:≤. 證明:由已知,得Sn=3n-1, ≤等價(jià)于≤,即3n≥2n+1.(*) 法一:用數(shù)學(xué)歸納法證明上面不等式成立. ①當(dāng)n=1時(shí),左邊=3,右邊=3,所以(*)成立. ②假設(shè)當(dāng)n=k時(shí),(*)成立,即3k≥2k+1,那么當(dāng)n=k+1時(shí), 3k+1=3×3k≥3(2k+1)=6k+3≥2k+3=2(k+1)+1, 所以當(dāng)n=k+1時(shí),(*)成立. 綜合①②,得3n≥2n+1成立. 所以≤. 法二:當(dāng)n=1時(shí),左邊=3,右邊=3,所以(*)成立. 當(dāng)n≥2時(shí),3n=(1+2)n=C+C×2+C×22+…+C×2n=1+2n+…>1+2n,所以(*)成立. 所以≤. 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!