2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用教案
《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用教案》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題三 數(shù)列 第二講 數(shù)列的綜合應(yīng)用教案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第二講 數(shù)列的綜合應(yīng)用 [考情分析] 數(shù)列在解答題中的考查常以數(shù)列的相關(guān)項以及關(guān)系式,或數(shù)列的前n項和與第n項的關(guān)系入手,結(jié)合數(shù)列的遞推關(guān)系式與等差數(shù)列或等比數(shù)列的定義展開,求解數(shù)列的通項、前n項和,有時與參數(shù)的求解、數(shù)列不等式的證明等加以綜合.試題難度中等. 年份 卷別 考查角度及命題位置 2017 Ⅱ卷 等差、等比數(shù)列的綜合應(yīng)用·T17 Ⅲ卷 已知遞推關(guān)系求通項與裂項求和·T17 2016 Ⅱ卷 等差、等比數(shù)列的基本運算·T17 Ⅲ卷 數(shù)列的遞推關(guān)系式、等比數(shù)列的定義·T17 [真題自檢] 1.(2017·高考全國卷Ⅱ)已知等差數(shù)列{an}的
2、前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=-1, b1=1,a2+b2=2. (1)若a3+b3=5,求{bn}的通項公式; (2)若T3=21,求S3. 解析:設(shè){an}的公差為d,{bn}的公比為q,則an=-1+(n-1)d,bn=qn-1. 由a2+b2=2得d+q=3.?、? (1)由a3+b3=5得2d+q2=6.?、? 聯(lián)立①和②解得(舍去), 因此{bn}的通項公式為bn=2n-1. (2)由b1=1,T3=21得q2+q-20=0, 解得q=-5,q=4. 當(dāng)q=-5時,由①得d=8,則S3=21. 當(dāng)q=4時,由①得d=-1,則S3=-6.
3、 2.(2017·高考全國卷Ⅲ)設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通項公式; (2)求數(shù)列的前n項和. 解析:(1)因為a1+3a2+…+(2n -1)an=2n,故當(dāng)n≥2時,a1+3a2+…+(2n-3)an-1=2(n-1). 兩式相減得(2n -1)an=2, 所以an=(n≥2). 又由題設(shè)可得a1=2,符合上式, 從而{an}的通項公式為an=. (2)記{}的前n項和為Sn. 由(1)知==-. 則Sn=-+-+…+-=. 3.(2016·高考全國卷Ⅲ)已知各項都為正數(shù)的數(shù)列{an}滿足a1=1,a-(2an+
4、1-1)an-2an+1=0. (1)求a2,a3; (2)求{an}的通項公式. 解析:(1)由題意可得a2=,a3=. (2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1). 因此{an}的各項都為正數(shù),所以=. 故{an}是首項為1,公比為的等比數(shù)列,因此an=. 4.(2016·高考全國卷Ⅰ)已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn. (1)求{an}的通項公式; (2)求{bn}的前n項和. 解析:(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2.
5、所以數(shù)列{an}是首項為2,公差為3的等差數(shù)列,通項公式為an=3n-1. (2)由(1)知, anbn+1+bn+1=nbn,得bn+1=, 因此{bn}是首項為1,公比為的等比數(shù)列. 記{bn}的前n項和為Sn, 則Sn==-. 由遞推關(guān)系求通項 [方法結(jié)論] 求數(shù)列通項常用的方法 (1)定義法:①形如an+1=an+C(C為常數(shù)),直接利用定義判斷其為等差數(shù)列.②形如an+1=kan(k為非零常數(shù))且首項不為零,直接利用定義判斷其為等比數(shù)列. (2)疊加法:形如an+1=an+f(n),利用an=a1+(a2-a1)+(a3-a2)+…+(an-an-1),求其
6、通項公式. (3)疊乘法:形如=f(n)≠0,利用an=a1···…·,求其通項公式. (4)待定系數(shù)法:形如an+1=pan+q(其中p,q均為常數(shù),pq(p-1)≠0),先用待定系數(shù)法把原遞推公式轉(zhuǎn)化為an+1-t=p(an-t),其中t=,再轉(zhuǎn)化為等比數(shù)列求解. (5)構(gòu)造法:形如an+1=pan+qn(其中p,q均為常數(shù),pq(p-1)≠0),先在原遞推公式兩邊同除以qn+1,得=·+,構(gòu)造新數(shù)列{bn},得bn+1=·bn+,接下來用待定系數(shù)法求解. [題組突破] 1.(2017·威海模擬)已知數(shù)列{an}滿足a1=1,且an=an-1+()n(n≥2且n∈N*),則數(shù)列{
7、an}的通項公式為( ) A.a(chǎn)n= B.a(chǎn)n= C.a(chǎn)n=n+2 D.a(chǎn)n=(n+2)3n 解析:由an=an-1+()n(n≥2且n∈N*)得,3nan=3n-1an-1+1,3n-1an-1=3n-2an-2+1,…,32a2=3a1+1,以上各式相加得3nan=n+2,故an=. 答案:B 2.已知數(shù)列{an}滿足:a1=,an+1=an+,則數(shù)列{an}的通項公式為an=( ) A. B.1- C.1- D. 解析:通解:an+1-1=an+-1=(an-1),令bn=an-1,則××××…×=×××…×,從而得到=,又b1=a1-1=-,得bn=b1=-,
8、 所以an=1-,選C. 優(yōu)解:a1==1-,a2==1-,a3==1-,…,歸納可得an=1-,選C. 答案:C 3.(2017·宜昌調(diào)研)已知數(shù)列{an}滿足a1=1,an=(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn= (n∈N*). (1)求證:數(shù)列{bn}為等差數(shù)列; (2)求數(shù)列{an}的通項公式. 解析:(1)證明:∵bn=,且an=,∴bn+1===, ∴bn+1-bn=-=4. 又b1==1,∴數(shù)列{bn}是以1為首項,4為公差的等差數(shù)列. (2)由(1)知數(shù)列{bn}的通項公式為bn=1+(n-1)×4=4n-3,又bn=,∴an==. ∴數(shù)列{
9、an}的通項公式為an=. 4.已知數(shù)列{an}的前n項和Sn滿足Sn=2an+3n-12(n∈N*). 證明:數(shù)列{an-3}為等比數(shù)列,并求出數(shù)列{an}的通項公式. 解析:當(dāng)n=1時,S1=a1=2a1+3-12,∴a1=9. 當(dāng)n>1時,Sn-Sn-1=an=2an+3n-12-2an-1-3(n-1)+12=2an-2an-1+3, ∴an-3=2(an-1-3),∴{an-3}是以6為首項,2為公比的等比數(shù)列.∴an-3=6·2n-1, ∴an=6·2n-1+3. [誤區(qū)警示] 依據(jù)遞推式an+1=pan+q(p,q為常數(shù))求數(shù)列通項公式是最常見的一類題型.當(dāng)p=1
10、時,{an}為等差數(shù)列;當(dāng)p≠1,p≠0,q=0時,{an}為等比數(shù)列;當(dāng)p≠1,p≠0,q≠0時,如何求出其通項公式是一個難點,化解這類問題的思路是利用待定系數(shù)法,轉(zhuǎn)化成等比數(shù)列. 數(shù)列求和 [方法結(jié)論] 常用求和方法 (1)錯位相減法:適用于各項由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積組成的數(shù)列.把Sn=a1+a2+…+an兩邊同乘以相應(yīng)等比數(shù)列的公比q,得到qSn=a1q+a2q+…+anq,兩式錯位相減即可求出Sn. (2)裂項相消法:即將數(shù)列的通項分成兩個式子的代數(shù)和的形式,然后通過累加抵消中間若干項的方法.裂項相消法適用于形如(其中{an}是各項均不為零的等差數(shù)列,c為常
11、數(shù))的數(shù)列. (3)拆項分組法:把數(shù)列的每一項拆成兩項(或多項),再重新組合成兩個(或多個)簡單的數(shù)列,最后分別求和. [典例](2017·大連一中模擬)已知數(shù)列{an}是首項為正數(shù)的等差數(shù)列,數(shù)列{}的前n項和為Sn=. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=(-1)na,求數(shù)列{bn}的前2n項和T2n. 解析:(1)設(shè)等差數(shù)列{an}的公差為d,由已知得a1>0, 令n=1,則S1==,所以a1a2=3?、?, 令n=2,則S2=+=,所以a2a3=15 ②, a2=a1+d ③, a3=a1+2d?、?, 聯(lián)立①②③④,解得或(舍去),所以an=2n-1.
12、(2)由題意知,bn=(-1)na=(-1)n[n(n+1)-1],所以T2n=-(1×2-1)+(2×3-1)-(3×4-1)+…+(-1)2n·[2n(2n+1)-1]=[-(1×2-1)+(2×3-1)]+[-(3×4-1)+(4×5-1)]+…+{-[(2n-1)·2n-1]+[2n(2n+1)-1]}=4+8+…+4n==2n2+2n. [類題通法] 分類討論思想在數(shù)列求和中的應(yīng)用 (1)當(dāng)數(shù)列通項中含有(-1)n時,在求和時要注意分n為奇數(shù)與偶數(shù)處理. (2)對已知數(shù)列滿足=q,在求{an}的前n項和時分奇數(shù)項和偶數(shù)項分別求和. [演練沖關(guān)] 1.已知函數(shù)f(n)=且a
13、n=f(n)+f(n+1),則a1+a2+a3+…+a100=( ) A.0 B.100 C.-100 D.10 200 解析:由題意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101) =-1+101=100,故選B. 解析:B 2.已知Sn為數(shù)列{an}的前n項和,且a1=1,anan+1=3n,則S2 017=________. 解析:由anan+1=3n,得an-1a
14、n=3n-1(n≥2),所以=3(n≥2),則數(shù)列{an}的所有奇數(shù)項和偶數(shù)項均構(gòu)成以3為公比的等比數(shù)列,又a1=1,a1a2=3,所以a2=3,所以S2 017=+ =31 009-2. 答案:31 009-2 3.(2017·廣西三市聯(lián)考)已知等比數(shù)列{an}的前n項和為Sn,且6Sn=3n+1+a(n∈N*). (1)求a的值及數(shù)列{an}的通項公式; (2)若bn=(1-an)log3(a·an+1),求數(shù)列{}的前n項和Tn. 解析:(1)∵6Sn=3n+1+a(n∈N*), ∴當(dāng)n=1時,6S1=6a1=9+a, 當(dāng)n≥2時,6an=6(Sn-Sn-1)=2×3n,
15、即an=3n-1, ∵{an}是等比數(shù)列,∴a1=1,則9+a=6,得a=-3, ∴數(shù)列{an}的通項公式為an=3n-1(n∈N*). (2)由(1)得bn=(1-an)log3(a·an+1)=(3n-2)(3n+1), ∴Tn=++…+=++…+ =(1-+-+…+-) =. 數(shù)列與其他知識交匯的綜合問題 數(shù)列中的綜合問題,大多與函數(shù)、方程、不等式及解析幾何交匯,考查利用函數(shù)與方程的思想及分類討論思想解決數(shù)列中的問題,用不等式的方法研究數(shù)列的性質(zhì),數(shù)列與解析幾何交匯,主要涉及點列問題. 交匯點一 數(shù)列與函數(shù)交匯 [典例1] (2016·大連雙基測試)已知函數(shù)f(x)=
16、2sin(ωx+φ)(ω>0,|φ|<π)的圖象經(jīng)過點,,且在區(qū)間上為單調(diào)函數(shù). (1)求ω,φ的值; (2)設(shè)an=nf(n∈N*),求數(shù)列{an}的前30項和S30. 解析:(1)由題可得+φ=2 kπ-,k∈Z, +φ=2kπ+,k∈Z,解得ω=2,φ=2kπ-,k∈Z. ∵|φ|<π,∴φ=-. (2)∵an=2nsin(n∈N*), 數(shù)列(n∈N*)的周期為3, 前三項依次為0,,-, ∴a3n-2+a3n-1+a3n=(3n-2)×0+(3n-1)×+3n×(-)=-(n∈N*), ∴S30=(a1+a2+a3)+…+(a28+a29+a30)=-10. [類
17、題通法] 數(shù)列與函數(shù)的交匯問題的類型及解題方法 (1)已知函數(shù)條件,解決數(shù)列問題,此類問題一般利用函數(shù)的性質(zhì)、圖象研究數(shù)列問題;(2)已知數(shù)列條件,解決函數(shù)問題,解決此類問題一般要充分利用數(shù)列的范圍、公式、求和方法等對式子化簡變形. [演練沖關(guān)] 1.設(shè)曲線y=2 018xn+1(n∈N*)在點(1,2 018)處的切線與x軸的交點的橫坐標為xn,令an=log2 018xn,則a1+a2+…+a2 017的值為( ) A.2 018 B.2 017 C.1 D.-1 解析:因為y′=2 018(n+1)xn,所以切線方程是y-2 018=2 018(n+1)(x-1),所以
18、xn=, 所以a1+a2+…+a2 017=log2 018(x1·x2·…·x2 017)=log2 018(××…×)=log2 018=-1. 答案:D 交匯點二 數(shù)列與不等式交匯 [典例2] (2017·武漢調(diào)研)設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=9,a2為整數(shù),且Sn≤S5. (1)求{an}的通項公式; (2)設(shè)數(shù)列{}的前n項和為Tn,求證:Tn≤. 解析:(1)由a1=9,a2為整數(shù)可知,等差數(shù)列{an}的公差d為整數(shù). 又Sn≤S5,∴a5≥0,a6≤0, 于是9+4d≥0,9+5d≤0, 解得-≤d≤-. ∵d為整數(shù),∴d=-2. 故{a
19、n}的通項公式為an=11-2n. (2)證明:由(1),得==(-), ∴Tn=[(-)+(-)+…+(-)]=(-). 令bn=,由函數(shù)f(x)=的圖象關(guān)于點(4.5,0)對稱及其單調(diào)性,知0<b1<b2<b3<b4,b5<b6<b7<…<0,∴bn≤b4=1. ∴Tn≤×(1-)=. [類題通法] 數(shù)列與不等式的交匯多為不等式恒成立與證明和形式的不等式,在求解時要注意等價轉(zhuǎn)化即分離參數(shù)法與放縮法的技巧應(yīng)用. [演練沖關(guān)] 2.(2017·貴陽模擬)在數(shù)列{an}中,a1+++…+=2n-1(n∈N*),且a1=1,若存在n∈N*使得an≤n (n+1)λ成立,則實數(shù)λ的最小值為________. 解析:依題意得,數(shù)列{}的前n項和為2n-1,當(dāng)n≥2時,=(2n-1)-(2n-1-1)=2n-1,且=21-1=1=21-1,因此=2n-1(n∈N*),=.記bn=,則bn>0,==>=1,bn+1>bn,數(shù)列{bn}是遞增數(shù)列,數(shù)列{bn}的最小項是b1=.依題意得,存在n∈N*使得λ≥=bn成立,即有λ≥b1=,λ的最小值是. 答案: - 9 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案