歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2018年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第79講 圓錐曲線中的定點(diǎn)和定值問題的解法

  • 資源ID:68742476       資源大?。?span id="fzyegxv" class="font-tahoma">2.58MB        全文頁數(shù):10頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

2018年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第79講 圓錐曲線中的定點(diǎn)和定值問題的解法

第79講 圓錐曲線中的定點(diǎn)和定值問題的解法【知識要點(diǎn)】一、 定點(diǎn)問題:對滿足一定條件曲線上兩點(diǎn)連結(jié)所得直線過定點(diǎn)或滿足一定條件的曲線過定點(diǎn)問題,證明直線過定點(diǎn),一般有兩種方法.(1)特殊探求,一般證明:即可以先考慮動直線或曲線的特殊情況,找出定點(diǎn)的位置,然后證明該定點(diǎn)在該直線或該曲線上(定點(diǎn)的坐標(biāo)直線或曲線的方程后等式恒成立).(2)分離參數(shù)法:一般可以根據(jù)需要選定參數(shù),結(jié)合已知條件求出直線或曲線的方程,分離參數(shù)得到等式,(一般地,為關(guān)于的二元一次關(guān)系式)由上述原理可得方程組,從而求得該定點(diǎn).二、定值問題:在幾何問題中,有些幾何量與參數(shù)無關(guān),這就構(gòu)成了定值問題,定值問題的處理常見的方法有:(1)特殊探究,一般證明.(2)直接求題目給定的對象的值,證明其結(jié)果是一個常數(shù).【方法講評】題型一定點(diǎn)問題方法一特殊探求,一般證明:即可以先考慮動直線或曲線的特殊情況,找出定點(diǎn)的位置,然后證明該定點(diǎn)在該直線或該曲線上(定點(diǎn)的坐標(biāo)直線或曲線的方程后等式恒成立).方法二分離參數(shù)法:若等式對恒成立,則同時成立,運(yùn)用這一原理,可以證明直線或曲線過定點(diǎn)問題.一般可以根據(jù)需要選定參數(shù),結(jié)合已知條件求出直線或曲線的方程,分離參數(shù)得到等式,(一般地,為關(guān)于的二元一次關(guān)系式)由上述原理可得方程組,從而求得該定點(diǎn).【例1】 設(shè)點(diǎn)和是拋物線上原點(diǎn)以外的兩個動點(diǎn),且,求證直線過定點(diǎn). 【解析一】取寫出直線的方程;再取寫出直線的方程;最后求出兩條直線的交點(diǎn),得交點(diǎn)為.設(shè),直線的方程為, 由題意得兩式相減得 ,即,直線的方程為,整理得 【點(diǎn)評】(1)證明直線過定點(diǎn),一般有兩種方法.方法一:特殊探求,一般證明:即可以先考慮動直線或曲線的特殊情況,找出定點(diǎn)的位置,然后證明該定點(diǎn)在該直線或該曲線上(定點(diǎn)的坐標(biāo)直線或曲線的方程后等式恒成立).方法二:分離參數(shù)法:若等式對恒成立,則同時成立,運(yùn)用這一原理,可以證明直線或曲線過定點(diǎn)問題.一般可以根據(jù)需要選定參數(shù),結(jié)合已知條件求出直線或曲線的方程,分離參數(shù)得到等式,(一般地,為關(guān)于的二元一次關(guān)系式)由上述原理可得方程組,從而求得該定點(diǎn).(2)解析一使用的就是方法一,解析二使用的就是方法二. 大家注意靈活選擇. 【反饋檢測1】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為()求橢圓的標(biāo)準(zhǔn)方程;()若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo) 【反饋檢測2】在直角坐標(biāo)系中,橢圓 的離心率,且過點(diǎn),橢圓的長軸的兩端點(diǎn)為,點(diǎn)為橢圓上異于的動點(diǎn),定直線與直線、分別交于兩點(diǎn). (1)求橢圓的方程;(2)在軸上是否存在定點(diǎn)經(jīng)過以為直徑的圓,若存在,求定點(diǎn)坐標(biāo);若不存在,說明理由. 題型二定值問題方法一特殊探究,一般證明.方法二直接求題目給定的對象的值,證明其結(jié)果是一個常數(shù). 【例2】過拋物線:(0)的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段與的長分別為,則的值必等于( )A B C D 又由,消去得, 【點(diǎn)評】定值問題的處理常見的方法有:(1)特殊探究,一般證明.(2)直接求題目給定的對象的值,證明其結(jié)果是一個常數(shù).【反饋檢測3】橢圓的離心率為,且過點(diǎn)(1)求橢圓的方程;(2)若分別是橢圓的左、右頂點(diǎn),動點(diǎn)滿足,且交橢圓于不同于的點(diǎn),求證:為定值 【反饋檢測4】如圖,為橢圓的左右焦點(diǎn),是橢圓的兩個頂點(diǎn),若點(diǎn)在橢圓上,則點(diǎn)稱為點(diǎn)的一個“橢點(diǎn)”.直線與橢圓交于兩點(diǎn),兩點(diǎn)的“橢點(diǎn)”分別為,已知以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn). (1)求橢圓的標(biāo)準(zhǔn)方程;(2)試探討的面積是否為定值?若為定值,求出該定值;若不為定值,請說明理由. 高中數(shù)學(xué)常見題型解法歸納及反饋檢測第79講:圓錐曲線中的定點(diǎn)和定值問題的解法參考答案 【反饋檢測1答案】(1);(2)直線過定點(diǎn),定點(diǎn)坐標(biāo)為 ()設(shè),聯(lián)立得,又,因為以為直徑的圓過橢圓的右焦點(diǎn),即, 【反饋檢測2答案】(1);(2)存在,.【反饋檢測2詳細(xì)解析】(1),橢圓的方程為.(2)設(shè)、的斜率分別為.即,由知,由知,的中點(diǎn).以為直徑的圓的方程為,令,即,解得或,存在定點(diǎn)經(jīng)過以為直徑的圓.【反饋檢測3答案】(1)(2) 【反饋檢測4答案】(1);(2)的面積為定值1.【反饋檢測4詳細(xì)解析】(1)由題可得解得,故橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),則,.由,即.(*)當(dāng)直線的斜率不存在時,.當(dāng)直線的斜率存在時,設(shè)其直線為,聯(lián)立得,則,同理,代入(*),整理得,此時,. 綜上,的面積為定值1. 10

注意事項

本文(2018年高考數(shù)學(xué) 常見題型解法歸納反饋訓(xùn)練 第79講 圓錐曲線中的定點(diǎn)和定值問題的解法)為本站會員(xins****2008)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!