華南師范大學(xué)物理與電信工程學(xué)院2006-2007學(xué)年(2)學(xué)期期末考試試卷《信號(hào)與系統(tǒng)》試卷(A卷)
-
資源ID:6531390
資源大?。?span id="yidcnyh" class="font-tahoma">623.50KB
全文頁(yè)數(shù):8頁(yè)
- 資源格式: DOC
下載積分:3積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
華南師范大學(xué)物理與電信工程學(xué)院2006-2007學(xué)年(2)學(xué)期期末考試試卷《信號(hào)與系統(tǒng)》試卷(A卷)
物理與電信工程學(xué)院2006 /2007學(xué)年(2)學(xué)期期末考試試卷信號(hào)與系統(tǒng)試卷(A 卷)專業(yè) 年級(jí) 班級(jí) 姓名 學(xué)號(hào) 題號(hào)一二三四五六七八九十總分得分一、填空題(每空1分,共20分)1單位沖激函數(shù)的 運(yùn)算可以得到單位階躍函數(shù);單位階躍函數(shù)的 運(yùn)算可以得到單位沖激函數(shù)。2信號(hào)可由信號(hào)的 運(yùn)算和 運(yùn)算獲得。3LTI連續(xù)系統(tǒng)的零輸入響應(yīng)與 之和可構(gòu)成LTI系統(tǒng)的 。4LTI連續(xù)系統(tǒng)的經(jīng)典解包括齊次解和特解,齊次解的函數(shù)形式僅依賴于 的特性,特解的函數(shù)形式由 確定。5用經(jīng)典法求解LTI連續(xù)系統(tǒng)時(shí),系統(tǒng)在時(shí)刻一組值稱為系統(tǒng)的 ,而在時(shí)刻的一組值稱為系統(tǒng)的 。6LTI連續(xù)系統(tǒng)的沖激響應(yīng)是激勵(lì)信號(hào)為 所引起的零狀態(tài)響應(yīng);階躍響應(yīng)是激勵(lì)信號(hào)為 所引起的零狀態(tài)響應(yīng)。7兩個(gè)信號(hào)和的卷積積分等于 。利用卷積積分,可以計(jì)算LTI系統(tǒng)的 響應(yīng)。8描述離散系統(tǒng)的數(shù)學(xué)模型是 。9 , 。10 , 。 11周期信號(hào)滿足狄里赫利條件時(shí),可以展開(kāi)成傅里葉級(jí)數(shù),其中傅里葉系數(shù) 。 二、單項(xiàng)選擇題(在每小題的備選答案中,選出一個(gè)正確答案,并將正確答案的序號(hào)填在括號(hào)內(nèi)。每小題2分,共10分)1單位序列在k=0時(shí)其數(shù)值為( )。A1 B0 C無(wú)窮大 D無(wú)窮小 2已知兩個(gè)子系統(tǒng)的沖激響應(yīng)分別為,則由這兩個(gè)子系統(tǒng)級(jí)聯(lián)后的復(fù)合系統(tǒng)的沖激響應(yīng)為( )。A B C無(wú)法確定 D 3已知某連續(xù)系統(tǒng)的零狀態(tài)響應(yīng),則可知系統(tǒng)是( )。A不能確定穩(wěn)定性 B穩(wěn)定的 C不穩(wěn)定的 D非因果的 4一個(gè)連續(xù)系統(tǒng),如果其輸出與輸入信號(hào)頻譜滿足關(guān)系:,則簡(jiǎn)稱該系統(tǒng)為( )系統(tǒng)。A因果 B全通 C不穩(wěn)定 D平衡 5根據(jù)沖激函數(shù)的性質(zhì),可化簡(jiǎn)為( )。A0 B1 C D三畫圖題(共20分)1(5分)已知信號(hào)的波形如圖所示,試畫出的波形圖。2(5分)已知信號(hào)的頻譜函數(shù)波形如圖所示,試畫出的頻譜圖。3(10分)如下圖所示電路,原電路處于穩(wěn)定狀態(tài),當(dāng)時(shí),開(kāi)關(guān)S閉合,畫出電路的S域電路模型。 四計(jì)算題(共50分)1(10分)描述某LTI系統(tǒng)的微分方程為當(dāng),求系統(tǒng)的零輸入響應(yīng)和零狀態(tài)響應(yīng)。 2(10分)連續(xù)因果系統(tǒng)的系統(tǒng)函數(shù)的極點(diǎn)如圖所示,沒(méi)有零點(diǎn)。且當(dāng)時(shí),。(1)求出系統(tǒng)函數(shù)的表達(dá)式;(2)求出系統(tǒng)頻率響應(yīng)函數(shù);(3)判斷系統(tǒng)是否穩(wěn)定,并說(shuō)明理由。3(15分)如圖所示電路,若激勵(lì)信號(hào),求響應(yīng),并指出響應(yīng)中的強(qiáng)迫響應(yīng)分量、自由響應(yīng)分量、暫態(tài)分量和穩(wěn)態(tài)分量。 4(15分)一個(gè)LTI系統(tǒng)的頻率響應(yīng)若輸入利用頻域卷積定理和系統(tǒng)的頻域分析方法求該系統(tǒng)的輸出y(t)。物理與電信工程學(xué)院2006 /2007學(xué)年(2)學(xué)期期末考試試卷信號(hào)與系統(tǒng)試卷(A 卷)參考答案一1積分、微分 2 平移,反轉(zhuǎn) 3零狀態(tài)響應(yīng),全響應(yīng) 4系統(tǒng)(本身),激勵(lì)信號(hào) 5初始條件,初始狀態(tài) 6單位沖激函數(shù),單位階躍函數(shù) 7,零狀態(tài) 8差分方程 9, 10,11 二1A 2D 3C 4B 5C 三1.門函數(shù)、沖激函數(shù)(4分),坐標(biāo)(1分)。2波形圖(4分),坐標(biāo)(1分)。 3.電感表達(dá)(2分),電容表達(dá)(2分),電阻表達(dá)(2分),極性(4分)。 四1解:對(duì)微分方程取拉普拉斯變換,有即可解得(5分)將和各初始值代入式,得 對(duì)以上二式取逆變換,得零輸入響應(yīng)和零狀態(tài)響應(yīng)分別為(5分)2解:(1)由圖可知,于是可設(shè)系統(tǒng)函數(shù)又因,所以,系統(tǒng)函數(shù)為(6分)(2)頻率響應(yīng)函數(shù)為(1分)(3)因?yàn)橄到y(tǒng)的極點(diǎn)位于復(fù)平面中的左半開(kāi)平面,所以系統(tǒng)是穩(wěn)定系統(tǒng)。(3分)3解: 電壓轉(zhuǎn)移函數(shù)(5分)若,則而于是(6分)其中,強(qiáng)迫響應(yīng)分量:;自由響應(yīng)分量:;暫態(tài)響應(yīng)分量:;穩(wěn)態(tài)響應(yīng)分量:0 (4分)4解: ,又有 則由頻域卷積定理可得 (7分)又由已知可得 則系統(tǒng)輸出的傅里葉變換為(5分)又由傅里葉變換對(duì)稱性可得且有則由頻域卷積定理可得系統(tǒng)的輸出為 (3分)8