《2018屆高三數(shù)學(xué)一輪復(fù)習(xí): 第4章 第1節(jié) 課時(shí)分層訓(xùn)練24》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018屆高三數(shù)學(xué)一輪復(fù)習(xí): 第4章 第1節(jié) 課時(shí)分層訓(xùn)練24(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)分層訓(xùn)練(二十四)
平面向量的概念及線性運(yùn)算
A組 基礎(chǔ)達(dá)標(biāo)
(建議用時(shí):30分鐘)
一、選擇題
1.在△ABC中,已知M是BC中點(diǎn),設(shè)=a,=b,則=( )
【導(dǎo)學(xué)號(hào):01772142】
A.a-b B.a+b
C.a(chǎn)-b D.a+b
A [=+=-+=-b+a,故選A.]
2.已知=a+2b,=-5a+6b,=7a-2b,則下列一定共線的三點(diǎn)是( )
A.A,B,C B.A,B,D
C.B,C,D D.A,C,D
B [因?yàn)椋剑?a+6b=3(a+2b)=3,又,有公共點(diǎn)A,所以A,B,D三點(diǎn)共線.]
3.在△ABC中,已知D
2、是AB邊上的一點(diǎn),若=2,=+λ,則λ等于( )
【導(dǎo)學(xué)號(hào):01772143】
A. B.
C.- D.-
A [∵=2,即-=2(-),
∴=+,∴λ=.]
4.設(shè)a,b都是非零向量,下列四個(gè)條件中,使=成立的充分條件是( )
A.a(chǎn)=-b B.a∥b
C.a(chǎn)=2b D.a∥b且|a|=|b|
C [=?a=?a與b共線且同向?a=λb且λ>0.B,D選項(xiàng)中a和b可能反向.A選項(xiàng)中λ<0,不符合λ>0.]
5.設(shè)D,E,F(xiàn)分別是△ABC的三邊BC,CA,AB上的點(diǎn),且=2,=2,=2,則++與( )
A.反向平行 B.同向平行
C.互相垂直 D.既
3、不平行也不垂直
A [由題意得=+=+,
=+=+,
=+=+,
因此++=+(+-)
=+=-,
故++與反向平行.]
二、填空題
6.已知O為四邊形ABCD所在平面內(nèi)一點(diǎn),且向量,,,滿足等式+=+,則四邊形ABCD的形狀為_(kāi)_______.
【導(dǎo)學(xué)號(hào):01772144】
平行四邊形 [由+=+得-=-,
所以=,所以四邊形ABCD為平行四邊形.]
7.在矩形ABCD中,O是對(duì)角線的交點(diǎn),若=5e1,=3e2,則=________.(用e1,e2表示)
e1+e2 [在矩形ABCD中,因?yàn)镺是對(duì)角線的交點(diǎn),所以==(+)=(+)=(5e1+3e2).]
8.(
4、2015·北京高考)在△ABC中,點(diǎn)M,N滿足=2,=.若=x+y,則x=________;y=________.
- [∵=2,∴=.
∵=,∴=(+),
∴MN=-=(+)-
=-.
又=x+y,∴x=,y=-.]
三、解答題
9.在△ABC中,D,E分別為BC,AC邊上的中點(diǎn),G為BE上一點(diǎn),且GB=2GE,設(shè)=a,=b,試用a,b表示,.
圖4-1-1
[解]?。?+)=a+b.2分
=+=+=+(+)
=+(-)
=+
=a+b.12分
10.設(shè)兩個(gè)非零向量e1和e2不共線.
(1)如果=e1-e2,=3e1+2e2,=-8e1-2e2,
求證:
5、A,C,D三點(diǎn)共線;
(2)如果=e1+e2,=2e1-3e2,=2e1-ke2,且A,C,D三點(diǎn)共線,求k的值.
[解] (1)證明:∵=e1-e2,=3e1+2e2,
=-8e1-2e2,
∴=+=4e1+e2
=-(-8e1-2e2)=-,
∴與共線.3分
又∵與有公共點(diǎn)C,∴A,C,D三點(diǎn)共線.5分
(2)=+=(e1+e2)+(2e1-3e2)=3e1-2e2.7分
∵A,C,D三點(diǎn)共線,
∴與共線,從而存在實(shí)數(shù)λ使得=λ,9分
即3e1-2e2=λ(2e1-ke2),
得解得λ=,k=.12分
B組 能力提升
(建議用時(shí):15分鐘)
1.設(shè)M是△ABC
6、所在平面上的一點(diǎn),且++=0,D是AC的中點(diǎn),則的值為 ( )
【導(dǎo)學(xué)號(hào):01772145】
A. B.
C.1 D.2
A [∵D是AC的中點(diǎn),延長(zhǎng)MD至E,使得DE=MD(圖略),∴四邊形MAEC為平行四邊形,∴==(+).∵++=0,∴=-(+)=-3,∴==,故選A.]
2.(2017·遼寧大連高三雙基測(cè)試)如圖4-1-2,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于點(diǎn)H,M為AH的中點(diǎn).若=λ+μ,則λ+μ=________.
圖4-1-2
[因?yàn)锳B=2,∠ABC=60°,AH⊥BC,所以BH=1.
因?yàn)辄c(diǎn)M為AH的中點(diǎn),所以==(+)==+,又=λ+μ,所以λ=,μ=,所以λ+μ=.]
3.已知a,b不共線,=a,=b,=c,=d,=e,設(shè)t∈R,如果3a=c,2b=d,e=t(a+b),是否存在實(shí)數(shù)t使C,D,E三點(diǎn)在一條直線上?若存在,求出實(shí)數(shù)t的值,若不存在,請(qǐng)說(shuō)明理由.
[解] 由題設(shè)知,=d-c=2b-3a,=e-c=(t-3)a+tb,C,D,E三點(diǎn)在一條直線上的充要條件是存在實(shí)數(shù)k,使得=k,即(t-3)a+tb=-3ka+2kb,3分
整理得(t-3+3k)a=(2k-t)b.6分
因?yàn)閍,b不共線,所以有9分
解之得t=.故存在實(shí)數(shù)t=使C,D,E三點(diǎn)在一條直線上.12分