(通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 第25練 導(dǎo)數(shù)的概念及簡(jiǎn)單應(yīng)用精準(zhǔn)提分練習(xí) 文.docx
第25練導(dǎo)數(shù)的概念及簡(jiǎn)單應(yīng)用明晰考情1.命題角度:考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值和最值.2.題目難度:中檔偏難.考點(diǎn)一導(dǎo)數(shù)的幾何意義方法技巧(1)f(x0)表示函數(shù)f(x)在xx0處的瞬時(shí)變化率.(2)f(x0)的幾何意義是曲線yf(x)在點(diǎn)P(x0,y0)處切線的斜率.1.設(shè)點(diǎn)P是曲線yx3x上的任意一點(diǎn),且曲線在點(diǎn)P處的切線的傾斜角為,則角的取值范圍是()A.B.C.D.答案C解析y3x2,tan,又0<,0或.2.設(shè)函數(shù)f(x)x3ax2,若曲線yf(x)在點(diǎn)P(x0,f(x0)處的切線方程為xy0,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(1,1)C.(1,1) D.(1,1)或(1,1)答案D解析由題意可知f(x)3x22ax,則有f(x0)3x2ax01,又切點(diǎn)為(x0,x0),可得xaxx0,兩式聯(lián)立解得或則點(diǎn)P的坐標(biāo)為(1,1)或(1,1).故選D.3.(2018全國(guó))設(shè)函數(shù)f(x)x3(a1)x2ax,若f(x)為奇函數(shù),則曲線yf(x)在點(diǎn)(0,0)處的切線方程為()A.y2xB.yxC.y2xD.yx答案D解析方法一f(x)x3(a1)x2ax,f(x)3x22(a1)xa.又f(x)為奇函數(shù),f(x)f(x)恒成立,即x3(a1)x2axx3(a1)x2ax恒成立,a1,f(x)3x21,f(0)1,曲線yf(x)在點(diǎn)(0,0)處的切線方程為yx.故選D.方法二f(x)x3(a1)x2ax為奇函數(shù),f(x)3x22(a1)xa為偶函數(shù),a1,即f(x)3x21,f(0)1,曲線yf(x)在點(diǎn)(0,0)處的切線方程為yx.故選D.4.設(shè)曲線y在點(diǎn)處的切線與直線xay10垂直,則a_.答案1解析y,則曲線y在點(diǎn)處的切線的斜率為k11.所以直線斜率存在,即a0,所以斜率k2,又該切線與直線xay10垂直,所以k1k21,解得a1.考點(diǎn)二導(dǎo)數(shù)與函數(shù)的單調(diào)性方法技巧(1)若求單調(diào)區(qū)間(或證明單調(diào)性),只要在函數(shù)定義域內(nèi)解(或證明)不等式f(x)>0或f(x)<0.(2)若已知函數(shù)的單調(diào)性,則轉(zhuǎn)化為不等式f(x)0或f(x)0在單調(diào)區(qū)間上恒成立問題來(lái)求解.5.已知函數(shù)f(x)lnxx,若af,bf(),cf(5),則()A.c<b<aB.c<a<bC.b<c<aD.a<c<b答案A解析f(x)1<0恒成立,f(x)在(0,)上為減函數(shù).afln33f(3).3<<5,f(3)>f()>f(5),a>b>c.故選A.6.設(shè)函數(shù)f(x)x29lnx在區(qū)間a1,a1上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是()A.(1,2 B.4,)C.(,2 D.(0,3答案A解析易知f(x)的定義域?yàn)?0,),且f(x)x.由f(x)x<0,解得0<x<3.f(x)x29lnx在a1,a1上單調(diào)遞減,解得1<a2.7.若定義在R上的函數(shù)f(x)滿足f(0)1,其導(dǎo)函數(shù)f(x)滿足f(x)k1,則下列結(jié)論中一定錯(cuò)誤的是()A.fB.fC.fD.f答案C解析導(dǎo)函數(shù)f(x)滿足f(x)k1,f(x)k0,k10,0,可構(gòu)造函數(shù)g(x)f(x)kx,可得g(x)0,故g(x)在R上為增函數(shù),f(0)1,g(0)1,gg(0),f1,f,選項(xiàng)C錯(cuò)誤,故選C.考點(diǎn)三導(dǎo)數(shù)與函數(shù)的極值、最值方法技巧(1)函數(shù)零點(diǎn)問題,常利用數(shù)形結(jié)合與函數(shù)極值求解.(2)含參恒成立或存在性問題,可轉(zhuǎn)化為函數(shù)最值問題;若能分離參數(shù),可先分離.特別提醒(1)f(x0)0是函數(shù)yf(x)在xx0處取得極值的必要不充分條件.(2)函數(shù)f(x)在a,b上有唯一一個(gè)極值點(diǎn),這個(gè)極值點(diǎn)就是最值點(diǎn).8.(2017全國(guó))若x2是函數(shù)f(x)(x2ax1)ex1的極值點(diǎn),則f(x)的極小值為()A.1B.2e3C.5e3D.1答案A解析函數(shù)f(x)(x2ax1)ex1,則f(x)(2xa)ex1(x2ax1)ex1ex1x2(a2)xa1.由x2是函數(shù)f(x)的極值點(diǎn),得f(2)e3(42a4a1)(a1)e30,所以a1.所以f(x)(x2x1)ex1,f(x)ex1(x2x2).由ex10恒成立,得當(dāng)x2或x1時(shí),f(x)0,且當(dāng)x2時(shí),f(x)0;當(dāng)2x1時(shí),f(x)0;當(dāng)x1時(shí),f(x)0.所以x1是函數(shù)f(x)的極小值點(diǎn).所以函數(shù)f(x)的極小值為f(1)1.故選A.9.若函數(shù)f(x)(12a)x2lnx(a0)在區(qū)間內(nèi)有極大值,則a的取值范圍是()A.B.(1,)C.(1,2) D.(2,)答案C解析f(x)ax(12a)(a0,x0).若f(x)在內(nèi)有極大值,則f(x)在內(nèi)先大于0,再小于0,即解得1a2.10.(2018江蘇)若函數(shù)f(x)2x3ax21(aR)在(0,)內(nèi)有且只有一個(gè)零點(diǎn),則f(x)在1,1上的最大值與最小值的和為_.答案3解析f(x)6x22ax2x(3xa)(x0).當(dāng)a0時(shí),f(x)0,f(x)在(0,)上單調(diào)遞增,又f(0)1,f(x)在(0,)上無(wú)零點(diǎn),不合題意.當(dāng)a0時(shí),由f(x)0,解得x,由f(x)0,解得0x,f(x)在上單調(diào)遞減,在上單調(diào)遞增.又f(x)只有一個(gè)零點(diǎn),f10,a3.此時(shí)f(x)2x33x21,f(x)6x(x1),當(dāng)x1,1時(shí),f(x)在1,0上單調(diào)遞增,在(0,1上單調(diào)遞減.又f(1)0,f(1)4,f(0)1,f(x)maxf(x)minf(0)f(1)143.11.已知函數(shù)f(x)x33ax(aR),函數(shù)g(x)lnx,若在區(qū)間1,2上f(x)的圖象恒在g(x)的圖象的上方(沒有公共點(diǎn)),則實(shí)數(shù)a的取值范圍是_.答案解析由題意知,3ax2在1,2上恒成立,記h(x)x2,x1,2,則h(x),1x2,h(x)0,h(x)在1,2上單調(diào)遞增,h(x)minh(1)1,3a1,即a.1.已知f(x)lnx,g(x)x2mx(m<0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與f(x)圖象的切點(diǎn)為(1,f(1),則m等于()A.1B.3C.4D.2答案D解析f(x),直線l的斜率為kf(1)1.又f(1)0,切線l的方程為yx1.g(x)xm,設(shè)直線l與g(x)的圖象的切點(diǎn)為(x0,y0),則有x0m1,y0x01,y0xmx0(m<0),于是解得m2.故選D.2.(2016全國(guó))若函數(shù)f(x)xsin2xasinx在(,)上單調(diào)遞增,則a的取值范圍是()A.1,1B.C.D.答案C解析方法一(特殊值法)不妨取a1,則f(x)xsin2xsinx,f(x)1cos2xcosx,但f(0)11<0,不具備在(,)上單調(diào)遞增,排除A,B,D.故選C.方法二(綜合法)函數(shù)f(x)xsin2xasinx在(,)上單調(diào)遞增,f(x)1cos2xacosx1(2cos2x1)acosxcos2xacosx0,即acosxcos2x在(,)上恒成立.當(dāng)cosx0時(shí),恒有0,得aR;當(dāng)0<cosx1時(shí),得acosx,令tcosx,g(t)t在(0,1上為增函數(shù),得ag(1);當(dāng)1cosx<0時(shí),得acosx,令tcosx,g(t)t在1,0)上為增函數(shù),得ag(1).綜上可得,a的取值范圍是,故選C.3.函數(shù)f(x)的定義域?yàn)殚_區(qū)間(a,b),導(dǎo)函數(shù)f(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)的極小值點(diǎn)有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案A解析由極小值的定義及導(dǎo)函數(shù)f(x)的圖象可知,f(x)在開區(qū)間(a,b)內(nèi)有1個(gè)極小值點(diǎn).4.若直線ya分別與直線y2(x1),曲線yxlnx交于點(diǎn)A,B,則|AB|的最小值為_.答案解析解方程2(x1)a, 得x1.設(shè)方程xlnxa的根為t(t0),則tlnta,則|AB|.設(shè)g(t)1(t0),則g(t)(t0),令g(t)0,得t1.當(dāng)t(0,1)時(shí),g(t)0,g(t)單調(diào)遞減;當(dāng)t(1,)時(shí),g(t)0,g(t)單調(diào)遞增,所以g(t)ming(1),所以|AB|,所以|AB|的最小值為.解題秘籍(1)對(duì)于未知切點(diǎn)的切線問題,一般要先設(shè)出切點(diǎn).(2)f(x)遞增的充要條件是f(x)0,且f(x)在任意區(qū)間內(nèi)不恒為零.(3)利用導(dǎo)數(shù)求解函數(shù)的極值、最值問題要利用數(shù)形結(jié)合思想,根據(jù)條件和結(jié)論的聯(lián)系靈活進(jìn)行轉(zhuǎn)化.1.函數(shù)yf(x)的導(dǎo)函數(shù)yf(x)的圖象如圖所示,則函數(shù)yf(x)的圖象可能是()答案D解析利用導(dǎo)數(shù)與函數(shù)的單調(diào)性進(jìn)行驗(yàn)證.f(x)>0的解集對(duì)應(yīng)yf(x)的增區(qū)間,f(x)<0的解集對(duì)應(yīng)yf(x)的減區(qū)間,驗(yàn)證只有D選項(xiàng)符合.2.函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是()A.(,2) B.(0,3) C.(1,4) D.(2,)答案D解析函數(shù)f(x)(x3)ex的導(dǎo)函數(shù)為f(x)(x3)exex(x3)ex(x2)ex.由函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,得當(dāng)f(x)>0時(shí),函數(shù)f(x)單調(diào)遞增,此時(shí)由不等式f(x)(x2)ex>0,解得x>2.3.已知函數(shù)f(x)x3mx24x3在區(qū)間1,2上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A.4m5B.2m4C.m2D.m4答案D解析由函數(shù)f(x)x3mx24x3,可得f(x)x2mx4,由函數(shù)f(x)x3mx24x3在區(qū)間1,2上是增函數(shù),可得x2mx40在區(qū)間1,2上恒成立,可得mx,又x24,當(dāng)且僅當(dāng)x2時(shí)取等號(hào),可得m4.4.若函數(shù)f(x)(x1)ex,則下列命題正確的是()A.對(duì)任意m<,都存在xR,使得f(x)<mB.對(duì)任意m>,都存在xR,使得f(x)<mC.對(duì)任意m<,方程f(x)m只有一個(gè)實(shí)根D.對(duì)任意m>,方程f(x)m總有兩個(gè)實(shí)根答案B解析f(x)(x2)ex,當(dāng)x>2時(shí),f(x)>0,f(x)為增函數(shù);當(dāng)x<2時(shí),f(x)<0,f(x)為減函數(shù).f(2)為f(x)的最小值,即f(x)(xR),故B正確.5.已知函數(shù)f(x)是定義在區(qū)間(0,)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f(x),且滿足xf(x)2f(x)0,則不等式的解集為()A.x|x2013B.x|x2013C.x|2013x0D.x|2018x2013答案D解析構(gòu)造函數(shù)g(x)x2f(x),則g(x)x2f(x)xf(x).當(dāng)x0時(shí),2f(x)xf(x)0,g(x)0,g(x)在(0,)上單調(diào)遞增.不等式,當(dāng)x20180,即x2018時(shí),(x2018)2f(x2018)52f(5),即g(x2018)g(5),0<x20185,2018x2013.6.函數(shù)f(x)3x2lnx2x的極值點(diǎn)的個(gè)數(shù)是()A.0B.1C.2D.無(wú)數(shù)答案A解析函數(shù)定義域?yàn)?0,),且f(x)6x2,由于x>0,方程6x22x10中的20<0,所以f(x)>0恒成立,即f(x)在定義域上單調(diào)遞增,無(wú)極值點(diǎn).7.設(shè)aR,若函數(shù)yexax,xR有大于零的極值點(diǎn),則()A.a<1B.a>1C.a>D.a<答案A解析yexax,yexa.函數(shù)yexax有大于零的極值點(diǎn),則方程yexa0有大于零的解.當(dāng)x>0時(shí),ex<1,aex<1.8.定義:如果函數(shù)f(x)在m,n上存在x1,x2(mx1x2n)滿足f(x1),f(x2),則稱函數(shù)f(x)是m,n上的“雙中值函數(shù)”.已知函數(shù)f(x)x3x2a是0,a上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是()A.B.C.D.答案C解析因?yàn)閒(x)x3x2a,所以由題意可知,f(x)3x22x在區(qū)間0,a上存在x1,x2(0x1x2a),滿足f(x1)f(x2)a2a,所以方程3x22xa2a在區(qū)間(0,a)上有兩個(gè)不相等的實(shí)根.令g(x)3x22xa2a(0xa),則解得a1,所以實(shí)數(shù)a的取值范圍是.9.已知函數(shù)f(x)axlnx,aR,若f(e)3,則a的值為_.答案解析因?yàn)閒(x)a(1lnx),aR,f(e)3,所以a(1lne)3,所以a.10.已知奇函數(shù)f(x)則函數(shù)h(x)的最大值為_.答案1e解析當(dāng)x>0時(shí),f(x)1,f(x),當(dāng)x(0,1)時(shí),f(x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)x>1時(shí),f(x)>0,函數(shù)f(x)單調(diào)遞增.當(dāng)x1時(shí),f(x)取到極小值e1,即f(x)的最小值為e1.又f(x)為奇函數(shù),且當(dāng)x<0時(shí),f(x)h(x),h(x)的最大值為(e1)1e.11.若在區(qū)間0,1上存在實(shí)數(shù)x使2x(3xa)<1成立,則a的取值范圍是_.答案(,1)解析2x(3xa)<1可化為a<2x3x,則在區(qū)間0,1上存在實(shí)數(shù)x使2x(3xa)<1成立等價(jià)于a<(2x3x)max,而y2x3x在0,1上單調(diào)遞減,y2x3x在0,1上的最大值為2001,a<1,故a的取值范圍是(,1).12.已知函數(shù)f(x)exx,若f(x)<0的解集中只有一個(gè)正整數(shù),則實(shí)數(shù)k的取值范圍為_.答案解析f(x)<0,即exx<0,即kx<只有一個(gè)正整數(shù)解,設(shè)g(x),所以g(x),當(dāng)x<1時(shí),g(x)>0,當(dāng)x>1時(shí),g(x)<0,所以g(x)在(,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,所以g(x)maxg(1),由圖可知,kx<的唯一一個(gè)正整數(shù)解只能是1,所以有解得k<,所以實(shí)數(shù)k的取值范圍為.