新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第九節(jié) 函數(shù)模型及應(yīng)用 Word版含解析
《新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第九節(jié) 函數(shù)模型及應(yīng)用 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編一輪創(chuàng)新思維文數(shù)人教版A版練習(xí):第二章 第九節(jié) 函數(shù)模型及應(yīng)用 Word版含解析(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 課時(shí)規(guī)范練 A組 基礎(chǔ)對(duì)點(diǎn)練 1.下列函數(shù)中隨x的增大而增長(zhǎng)速度最快的是( ) A.v=·ex B.v=100ln x C.v=x100 D.v=100×2x 答案:A 2.(20xx·開封質(zhì)檢)用長(zhǎng)度為24(單位:米)的材料圍成一矩形場(chǎng)地,中間加兩道隔墻,要使矩形的面積最大,則隔墻的長(zhǎng)度為( ) A.3米 B.4米 C.6米 D.12米 解析:設(shè)隔墻的長(zhǎng)為x(0<x<6)米,矩形的面積為y平方米,則y=x×=2x(6-x)=-2(x-3)2+18,所以當(dāng)x=3時(shí),y取得最大值. 答案:A 3.已知A,B兩地相距150千米,某人開汽車以60千米/小
2、時(shí)的速度從A地到達(dá)B地,在B地停留1小時(shí)后再以50千米/小時(shí)的速度返回A地,把汽車離開A地的距離x表示為時(shí)間t(小時(shí))的函數(shù)表達(dá)式是( ) A.x=60t B.x=60t+50t C.x= D.x= 解析:當(dāng)0≤t≤2.5時(shí),x=60t; 當(dāng)2.5<t≤3.5時(shí),x=150;當(dāng)3.5<t≤6.5時(shí),x=150-50(t-3.5). 答案:D 4.在某個(gè)物理實(shí)驗(yàn)中,測(cè)量得變量x和變量y的幾組數(shù)據(jù),如下表: x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00 則對(duì)x,y最適合的擬合函數(shù)是( ) A.y=2x B.y
3、=x2-1 C.y=2x-2 D.y=log2x 解析:根據(jù)x=0.50,y=-0.99,代入各選項(xiàng)計(jì)算,可以排除A;根據(jù)x=2.01,y=0.98,代入各選項(xiàng)計(jì)算,可以排除B,C;將各數(shù)據(jù)代入函數(shù)y=log2x,可知滿足題意.故選D. 答案:D 5.某商場(chǎng)銷售A型商品,已知該商品的進(jìn)價(jià)是每件3元,且銷售單價(jià)與日均銷售量的關(guān)系如表所示: 銷售單價(jià)/元 4 5 6 7 8 9 10 日均銷售量/件 400 360 320 280 240 200 160 請(qǐng)根據(jù)以上數(shù)據(jù)分析,要使該商品的日均銷售利潤(rùn)最大,則此商品的定價(jià)(單位:元/件)應(yīng)為( ) A.
4、4 B.5.5 C.8.5 D.10 解析:由題意可設(shè)定價(jià)為x元/件,利潤(rùn)為y元,則y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故當(dāng)x=8.5時(shí),y有最大值,故選C. 答案:C 6.(20xx·濟(jì)南模擬)某種動(dòng)物繁殖量y只與時(shí)間x年的關(guān)系為y=alog3(x+1),設(shè)這種動(dòng)物第2年有100只,到第8年它們將發(fā)展到( ) A.200只 B.300只 C.400只 D.500只 解析:∵繁殖數(shù)量y只與時(shí)間x年的關(guān)系為y=alog3(x+1),這種動(dòng)物第2年有100只, ∴100=alog3(2+1),∴a=100, ∴y=100log3(x+
5、1), ∴當(dāng)x=8時(shí),y=100 log3(8+1)=100×2=200.故選A. 答案:A 7. 某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,為降低消耗,開源節(jié)流,現(xiàn)要從這些邊角料上截取矩形鐵片(如圖中陰影部分)備用,當(dāng)截取的矩形面積最大時(shí),矩形兩邊長(zhǎng)x,y應(yīng)為( ) A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 解析:由三角形相似得=, 得x=(24-y),由0<x≤20得,8≤y<24, 所以S=xy=-(y-12)2+180, 所以當(dāng)y=12時(shí),S有最大值,此時(shí)x=15. 答案:A 8.世界人口在過去4
6、0年翻了一番,則每年人口平均增長(zhǎng)率約是(參考數(shù)據(jù)lg 2≈0.301 0,100.007 5≈1.017)( ) A.1.5% B.1.6% C.1.7% D.1.8% 解析:由題意得(1+x)40=2, ∴40lg(1+x)=lg 2,∴l(xiāng)g(1+x)≈0.007 5, ∴1+x=100.007 5,∴x≈0.017=1.7%. 故選C. 答案:C 9.當(dāng)生物死亡后,其體內(nèi)原有的碳14的含量大約每經(jīng)過5 730年衰減為原來的一半,這個(gè)時(shí)間稱為“半衰期”.當(dāng)死亡生物體內(nèi)的碳14含量不足死亡前的千分之一時(shí),用一般的放射性探測(cè)器就測(cè)不到了.若某死亡生物體內(nèi)的碳14用該放射性探
7、測(cè)器探測(cè)不到,則它經(jīng)過的“半衰期”個(gè)數(shù)至少是( ) A.8 B.9 C.10 D.11 解析:設(shè)該死亡生物體內(nèi)原有的碳14的含量為1,則經(jīng)過n個(gè)“半衰期”后的含量為n, 由n<,得n≥10, 所以,若某死亡生物體內(nèi)的碳14用該放射性探測(cè)器探測(cè)不到,則它至少需要經(jīng)過10個(gè)“半衰期”.故選C. 答案:C 10.某大型民企為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入.若該民企全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該民企全年投入的研發(fā)資金開始超過200萬元的年份是(參考數(shù)據(jù):lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30)(
8、 ) A. B. C. D. 解析:設(shè)后的第n年,該公司全年投入的研發(fā)資金開始超過200萬元,由130(1+12%)n>200,得1.12n>,兩邊取對(duì)數(shù),得n>≈=,∴n≥4,∴從開始,該公司全年投入的研發(fā)資金開始超過200萬元. 答案:D 11.某種病毒每經(jīng)過30分鐘由1個(gè)病毒可分裂成2個(gè)病毒,經(jīng)過x小時(shí)后,病毒個(gè)數(shù)y與時(shí)間x(小時(shí))的函數(shù)關(guān)系式為________,經(jīng)過5小時(shí),1個(gè)病毒能分裂成________個(gè). 解析:設(shè)原有1個(gè)病毒, 經(jīng)過1個(gè)30分鐘有2=21個(gè)病毒; 經(jīng)過2個(gè)30分鐘有2×2=4=22個(gè)病毒; 經(jīng)過3個(gè)30分鐘有4×2=8=23個(gè)病毒; ……
9、 經(jīng)過個(gè)30分鐘有22x=4x個(gè)病毒, ∴病毒個(gè)數(shù)y與時(shí)間x(小時(shí))的函數(shù)關(guān)系式為y=4x. ∴經(jīng)過5小時(shí),1個(gè)病毒能分裂成45=1 024個(gè). 答案:y=4x 1 024 12.(20xx·南昌模擬)某電信公司推出兩種手機(jī)收費(fèi)方式:A種方式是月租20元,B種方式是月租0元.一個(gè)月的本地網(wǎng)內(nèi)通話時(shí)間t(分鐘)與電話費(fèi)S(元)的函數(shù)關(guān)系如圖所示,當(dāng)通話150分鐘時(shí),這兩種方式的電話費(fèi)相差__________. 解析:依題意可設(shè)SA(t)=20+kt,SB(t)=mt. 又SA(100)=SB(100), ∴100k+20=100m,得k-m=-0.2, 于是SA(150)-S
10、B(150)=20+150k-150m =20+150×(-0.2)=-10,即兩種方式的電話費(fèi)相差10元. 答案:10元 13.某商家一月份至五月份累計(jì)銷售額達(dá)3 860萬元,預(yù)測(cè)六月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等.若一月份至十月份銷售總額至少達(dá)7 000萬元,則x的最小值是________. 解析:七月份的銷售額為500(1+x%),八月份的銷售額為500(1+x%)2,則一月份到十月份的銷售總額是3 860+500+2[500(1+x%)+500(1+x%)2],根據(jù)題意有3 860+5
11、00+2[500(1+x%)+500(1+x%)2]≥7 000,即25(1+x%)+25(1+x%)2≥66,令t=1+x%,則25t2+25t-66≥0,解得t≥或者t≤-(舍去),故1+x%≥,解得x≥20. 答案:20 14.某市用37輛汽車往災(zāi)區(qū)運(yùn)送一批救災(zāi)物資,假設(shè)以v km/h的速度直達(dá)災(zāi)區(qū),已知某市到災(zāi)區(qū)公路線長(zhǎng)400 km,為了安全起見,兩輛汽車的間距不得小于()2km,那么這批物資全部到達(dá)災(zāi)區(qū)的最少時(shí)間是________h(車身長(zhǎng)度不計(jì)). 解析:設(shè)全部物資到達(dá)災(zāi)區(qū)所需時(shí)間為t h,由題意可知,t相當(dāng)于最后一輛車行駛了(36×2+400) km所用的時(shí)間,因此,t=≥
12、12,當(dāng)且僅當(dāng)=,即v=時(shí)取“=”. 故這些汽車以 km/h的速度勻速行駛時(shí),所需時(shí)間最少,最少時(shí)間為12 h. 答案:12 B組 能力提升練 1.(20xx·重慶巴蜀中學(xué)模擬)某市近郊有一塊大約500米×500米的接近正方形的荒地,地方政府準(zhǔn)備在此建一個(gè)綜合性休閑廣場(chǎng),要建設(shè)如圖所示的一個(gè)總面積為3 000平方米的矩形場(chǎng)地,其中陰影部分為通道,通道寬度為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),塑膠運(yùn)動(dòng)場(chǎng)地占地面積為S平方米. (1)分別用x表示y和S的函數(shù)關(guān)系式,并給出定義域; (2)怎樣設(shè)計(jì)能使S取得最大值,并求出最大值. 解析:(1)由
13、已知xy=3 000,得y=,其定義域是(6, 500). S=(x-4)a+(x-6)a=(2x-10)a, ∵2a+6=y(tǒng),∴a=-3=-3, ∴S=(2x-10)·=3 030-,其定義域是(6,500). (2)S=3 030-≤3 030-2=3 030-2×300=2 430, 當(dāng)且僅當(dāng)=6x,即x=50∈(6,500)時(shí),等號(hào)成立, 此時(shí),x=50,y=60,Smax=2 430. ∴設(shè)計(jì)x=50米,y=60米,a=27米時(shí),運(yùn)動(dòng)場(chǎng)地面積最大,最大值為2 430米. 2.為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔
14、熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C萬元與隔熱層厚度x厘米滿足關(guān)系:C(x)=(0≤x≤10,k為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和. (1)求k的值及f(x)的表達(dá)式; (2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最???并求最小值. 解析:(1)當(dāng)x=0時(shí),C=8,∴k=40,∴C(x)=. ∴f(x)=6x+=6x+(0≤x≤10). (2)f(x)=2(3x+5)+-10, 設(shè)3x+5=t,t∈[5,35], ∴y=2t+-10≥2-10=70, 當(dāng)且僅當(dāng)2t=,即t=20時(shí)等號(hào)成立,這時(shí)x=5
15、,f(x)的最小值為70, 即隔熱層修建5 cm厚時(shí),總費(fèi)用f(x)達(dá)到最小,最小值為70萬元. 3.某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=3+x,每日的銷售額S(單位:萬元)與日產(chǎn)量x的函數(shù)關(guān)系式S=已知每日的利潤(rùn)L=S-C,且當(dāng)x=2時(shí),L=3. (1)求k的值; (2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值. 解析:(1)由題意可得, L= 因?yàn)閤=2時(shí),L=3,所以3=2×2++2. 解得k=18. (2)當(dāng)0<x<6時(shí),L=2x++2, 所以L=2(x-8)++18=-+18≤-2+18=6. 當(dāng)
16、且僅當(dāng)2(8-x)=,即x=5時(shí)取得等號(hào). 當(dāng)x≥6時(shí),L=11-x≤5. 所以當(dāng)x=5時(shí),L取得最大值6. 所以當(dāng)日產(chǎn)量為5噸時(shí),每日的利潤(rùn)可以達(dá)到最大值6萬元. 4.隨著中國(guó)一帶一路的深入發(fā)展,中國(guó)某陶瓷廠為了適應(yīng)發(fā)展,制定了以下生產(chǎn)計(jì)劃,每天生產(chǎn)陶瓷的固定成本為14 000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量f(x)(單位:件)與產(chǎn)量x(單位:件)之間的關(guān)系式為f(x)=,每件產(chǎn)品的售價(jià)g(x)(單位:元)與產(chǎn)量x之間的關(guān)系式為g(x)=. (1)寫出該陶瓷廠的日銷售利潤(rùn)Q(x)(單位:元)與產(chǎn)量x之間的關(guān)系式; (2)若要使得日銷售利潤(rùn)最大,則該陶瓷廠
17、每天應(yīng)生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn). 解析:(1)設(shè)總成本為c(x)(單位:元),則c(x)=14 000+210x, 所以日銷售利潤(rùn)Q(x)=f(x)g(x)-c(x) = (2)由(1)知,當(dāng)0≤x≤400時(shí), Q′(x)=-x2+x-210. 令Q′(x)=0,解得x=100或x=700(舍去). 易知當(dāng)x∈[0,100)時(shí),Q′(x)<0; 當(dāng)x∈(100,400]時(shí),Q′(x)>0. 所以Q(x)在區(qū)間[0,100)上單調(diào)遞減, 在區(qū)間(100,400]上單調(diào)遞增. 因?yàn)镼(0)=-14 000,Q(400)=30 000, 所以Q(x)在x=400時(shí)取到最大值,且最大值為30 000. 當(dāng)400<x<500時(shí),Q(x)=-x2+834x-143 600. 當(dāng)x==417時(shí),Q(x)取得最大值,最大值為Q(x)max=-4172+834×417-143 600=30 289. 綜上所述,若要使得日銷售利潤(rùn)最大,則該陶瓷廠每天應(yīng)生產(chǎn)417件產(chǎn)品,其最大利潤(rùn)為30 289元.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 8乘法口訣 (3)課件
- 創(chuàng)意思考方法
- 新版寧波波特曼大酒店
- 公司財(cái)務(wù)與財(cái)務(wù)預(yù)算
- d商品價(jià)格與消費(fèi)心理
- 191矩形(矩形的判定第1課時(shí))
- 乳腺癌術(shù)后-課件
- 河北NBIoT建設(shè)規(guī)劃
- 藥物外滲的處置
- 《中國(guó)媽媽》鑒賞-課件
- 整式的加減 (2)(教育精品)
- 路面工程監(jiān)督交底
- 廣東語文模擬考試評(píng)講課件
- 《科學(xué)探究:物質(zhì)的密度》課件-(公開課獲獎(jiǎng))2022年滬科版物理-3
- 區(qū)域活動(dòng)與習(xí)慣養(yǎng)成(彭艷潔)