《新編浙江高考數(shù)學(xué)理二輪專題復(fù)習(xí)檢測(cè):第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練15 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編浙江高考數(shù)學(xué)理二輪專題復(fù)習(xí)檢測(cè):第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練15 Word版含答案(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
專題能力訓(xùn)練15 橢圓、雙曲線、拋物線
(時(shí)間:60分鐘 滿分:100分)
一、選擇題(本大題共8小題,每小題5分,共40分)
1.方程(x+y-3)=0表示的曲線是( )
A.兩條射線
B.拋物線和一條線段
C.拋物線和一條直線
D.拋物線和兩條射線
2.(20xx浙江金麗衢十二校二模)雙曲線x2-4y2=4的漸近線方程是( )
A.y=±4x B.y=±x
C.y=±2x D.y=±x
3.已知雙曲線-x2=1的兩條漸近線分別與拋物線y2=2px(p>0)的準(zhǔn)線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若△OAB的面積為1,則
2、p的值為( )
A.1 B
C.2 D.4
4.已知雙曲線C1:-y2=1,雙曲線C2:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,M是雙曲線C2的一條漸近線上的點(diǎn),且OM⊥MF2,O為坐標(biāo)原點(diǎn),若=16,且雙曲線C1,C2的離心率相同,則雙曲線C2的實(shí)軸長(zhǎng)是( )
A.32 B.16 C.8 D.4
5.如圖,已知雙曲線C:=1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某漸近線交于兩點(diǎn)P,Q,若∠PAQ=60°,且=4,則雙曲線C的離心率為( )
A B
C D
6.設(shè)A,B是橢圓C:=1長(zhǎng)軸的兩個(gè)端點(diǎn),若C上存在點(diǎn)P滿足∠APB=
3、120°,則m的取值范圍是( )
A[12,+∞)
B[6,+∞)
C[12,+∞)
D[6,+∞)
7.已知雙曲線=1(a>0,b>0),A1,A2是其實(shí)軸頂點(diǎn),F是其右焦點(diǎn),B(0,b)是其虛軸端點(diǎn),若在線段BF上(不含端點(diǎn))存在不同的兩點(diǎn)Pi(i=1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則該雙曲線的離心率e的取值范圍是( )
A.(,+∞)
B
C
D
8.(20xx浙江紹興一中期末)已知拋物線y2=4x的焦點(diǎn)為F,若A,B是該拋物線上的點(diǎn),∠AFB=90°,線段AB的中點(diǎn)M在拋物線的準(zhǔn)線上的射影為點(diǎn)N,則的最大值為( )
4、
A B.1 C D
二、填空題(本大題共6小題,每小題5分,共30分)
9.已知一橢圓的方程為=1,過(guò)橢圓中心的直線交橢圓于A,B兩點(diǎn),F2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)的最小值為 ,△ABF2的面積的最大值為 .?
10.已知雙曲線過(guò)點(diǎn)(2,3),其漸近線方程為y=±x,則該雙曲線的標(biāo)準(zhǔn)方程是 .?
11.已知F是拋物線C:y2=4x的焦點(diǎn),M是C上一點(diǎn),FM的延長(zhǎng)線交y軸于點(diǎn)N.若,則||=.
12.已知拋物線C:y2=2px的焦點(diǎn)坐標(biāo)為F(2,0),則p= ;若已知點(diǎn)A(6,3),且點(diǎn)M在拋物線C上,則|MA|+|MF|的最小值為
5、 .?
13.已知雙曲線C:=1(a>0,b>0)的右頂點(diǎn)為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M,N兩點(diǎn).若∠MAN=60°,則C的離心率為.
14.已知A是雙曲線C:=1(a,b>0)的右頂點(diǎn),過(guò)左焦點(diǎn)F與y軸平行的直線交雙曲線于P,Q兩點(diǎn),若△APQ是銳角三角形,則雙曲線C的離心率的范圍是 .?
三、解答題(本大題共2小題,共30分.解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)
15.(本小題滿分15分)已知拋物線C:y2=2px(p>0)上的一點(diǎn)M(3,t)到其焦點(diǎn)的距離為5.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)T(-2,0)的直線l與
6、拋物線C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E,使得△EAB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率的取值范圍.
16.(本小題滿分15分)如圖,已知橢圓+y2=1的左、右頂點(diǎn)分別是A,B,設(shè)點(diǎn)P(,t)(t>0),連接PA交橢圓于點(diǎn)C,坐標(biāo)原點(diǎn)是O.
(1)證明:OP⊥BC;
(2)若四邊形OBPC的面積是,求t的值.
參考答案
專題能力訓(xùn)練15 橢圓、雙曲線、拋物線
1.D 解析 ∵(x+y-3)=0,
∴x+y-3=0(y2-4x≥0)或y2=4x.
∴x+y-3=0(x≤1或x≥
7、9)或y2=4x.
∴方程(x+y-3)=0表示的曲線是拋物線和兩條射線.故選D.
2.D 解析 雙曲線x2-4y2=4的漸近線方程是y=±x.故選D.
3.B 解析 雙曲線-x2=1的漸近線為y=±2x,拋物線y2=2px的漸近線為x=-,漸近線與準(zhǔn)線的交點(diǎn)為A,B,所以S△OAB=×2p=1,p=.故選B.
4.B 解析 因?yàn)殡p曲線C1:=1與雙曲線C2:=1的離心率相同,所以,解得,即雙曲線C1的一條漸近線方程為y=x,即x-2y=0.
又因?yàn)镺M⊥MF2,△OMF2的面積為16,
所以|OM|·|MF2|=|MF2|2=16,
解得|MF2|=4,即右焦點(diǎn)F2(c,0)到
8、漸近線x-2y=0的距離為4,
所以=4,解得c=4,a==8,2a=16,即雙曲線C1的實(shí)軸長(zhǎng)為16.故選B.
5.A 解析 因?yàn)椤螾AQ=60°且=4,
所以△QAP為等邊三角形,
設(shè)AQ=2R,則PQ=2R,OP=R,
漸近線方程為y=x,A(a,0),取PQ的中點(diǎn)M,則由點(diǎn)到直線距離得AM=,在Rt△APM中,由勾股定理可得(2R)2-R2=,
所以(ab)2=3R2(a2+b2),①
在△OQA中,由余弦定理得,
所以R2=a2,②
由①②結(jié)合c2=a2+b2,
可得e=.故選A.
6.A 解析 當(dāng)橢圓的焦點(diǎn)在x軸上時(shí),0
9、取最大值,要使橢圓C上存在點(diǎn)P滿足∠APB=120°,則∠APB≥120°,∠APO≥60°,tan∠APO=≥tan 60°=,解得04,
當(dāng)P位于短軸的端點(diǎn)時(shí),∠APB取最大值,要使橢圓C上存在點(diǎn)P滿足∠APB=120°,則∠APB≥120°,∠APO≥60°,tan∠APO=≥tan 60°=,解得m≥12.
故m的取值范圍是∪[12,+∞),應(yīng)選A.
7.D 解析 如圖,由題意知F(c,0),B(0,b),則直線BF的方程為bx+cy-bc=0,
∵在線段BF上(不含端點(diǎn))存在不同的兩點(diǎn)Pi(i=1,2),使得△PiA1A2(i=1,
10、2)構(gòu)成以線段A1A2為斜邊的直角三角形,∴以A1A2為直徑的圓與BF交于兩點(diǎn),即O與BF的距離小于a,∴1,∴e<.∵a.∴
11、×(a+b)2,
得到|AB|≥(a+b).∴,
即的最大值為.故選C.
9.10 2 解析 連接AF1,BF1,則由橢圓的中心對(duì)稱性可得=AF2+BF2+AB=AF1+AF2+AB=6+AB≥6+4=10,×2×2=2.
10.x2-=1 解析 ∵雙曲線漸近線方程為y=±x,故可設(shè)雙曲線方程為x2-=λ,
∵雙曲線過(guò)點(diǎn)(2,3),則4-=λ,即λ=1,故雙曲線的標(biāo)準(zhǔn)方程是x2-=1.
11.5 解析 由題意,知F(1,0),設(shè)M(x0,y0),N(x,y),
則由,可得(x0-1,y0)=(x-x0,y-y0)?又由題意可知x=0,則x0=,y0=±=±,y=3y0=±,則
12、||==5.
12.4 8 解析 拋物線C:y2=2px的焦點(diǎn)坐標(biāo)為F(2,0),則p=4.
已知點(diǎn)A(6,3),且點(diǎn)M在拋物線C:y2=8x上,可知A在拋物線內(nèi)部,則|MA|+|MF|的最小值為M到拋物線的準(zhǔn)線的距離;拋物線的準(zhǔn)線方程為x=-2,則|MA|+|MF|的最小值為8.
13. 解析 如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,
∵∠MAN=60°,∴|AP|=b,|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tan θ=.
又tan θ=,∴,解得a2=3b2,
∴e=.
14.(1,2) 解析 由題意得∠PAF<45°,PF
13、即1,∴10,解得m2>1.①
設(shè)A(x1,y1),B(x2,y2),E(x0,0),
則y1+y2=8m,y1y2=16.
∴x1+x2=8m2-4,x1x2=4.
∵△EAB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,
即AE⊥BE,
又=(x0-x1,-y1),=(x0-x2,-y2)
14、,
∴=(x0-x1)(x0-x2)+y1y2=-(x1+x2)x0+x1x2+y1y2=-(8m2-4)x0+20=0.
∴方程-(8m2-4)x0+20=0在R上有解.
∴Δ=(8m2-4)2-80≥0,解得m2≥.②
由①②,得m2≥.∴.
∴直線l的斜率的取值范圍為-≤k≤,且k≠0.
16.解 (1)設(shè)直線PA的方程為y=(x+),
由
整理得(4+t2)x2+2t2x+2t2-8=0,
解得x1=-,x2=,
則點(diǎn)C的坐標(biāo)是,
故直線BC的斜率kBC=-,
由于直線OP的斜率kOP=,故kBC·kOP=-1,
∴OP⊥BC.
(2)由S四邊形OBPC=,S四邊形OBPC=,得,整理得(t-1)(5t2+2t+12)=0.
∵5t2+2t+12≠0,∴t=1.