《新編高三文科數(shù)學(xué)通用版二輪復(fù)習(xí):第1部分 專(zhuān)題2 突破點(diǎn)4 等差數(shù)列、等比數(shù)列 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高三文科數(shù)學(xué)通用版二輪復(fù)習(xí):第1部分 專(zhuān)題2 突破點(diǎn)4 等差數(shù)列、等比數(shù)列 Word版含解析(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
專(zhuān)題二 數(shù) 列
建知識(shí)網(wǎng)絡(luò) 明內(nèi)在聯(lián)系
掃一掃,各專(zhuān)題近五年全國(guó)考點(diǎn)分布
高考點(diǎn)撥] 數(shù)列專(zhuān)題是高考的必考專(zhuān)題之一,主要考查等差、等比數(shù)列的基本量運(yùn)算及數(shù)列求和的能力,該部分即可單獨(dú)命題,又可與其他專(zhuān)題綜合命題,考查方式靈活多樣,結(jié)合近幾年高考命題研究,為此本專(zhuān)題我們按照“等差、等比數(shù)列”和“數(shù)列求和”兩條主線展開(kāi)分析和預(yù)測(cè).
突破點(diǎn)4 等差數(shù)列、等比數(shù)列
提煉1 等差數(shù)列、等比數(shù)列的運(yùn)算
(1)通項(xiàng)公式
等差數(shù)列:an=a1+(n-1)d;
等比數(shù)列:an=a1·qn-1.
(2)求和公式
等差數(shù)列:Sn==na1+d;
等比數(shù)列:Sn
2、==(q≠1).
(3)性質(zhì)
若m+n=p+q,
在等差數(shù)列中am+an=ap+aq;
在等比數(shù)列中am·an=ap·aq.
提煉2 等差數(shù)列、等比數(shù)列的判定與證明 數(shù)列{an}是等差數(shù)列或等比數(shù)列的證明方法:
(1)證明數(shù)列{an}是等差數(shù)列的兩種基本方法
①利用定義,證明an+1-an(n∈N*)為同一常數(shù);
②利用中項(xiàng)性質(zhì),即證明2an=an-1+an+1(n≥2).
(2)證明{an}是等比數(shù)列的兩種基本方法
①利用定義,證明(n∈N*)為同一常數(shù);
②利用等比中項(xiàng),即證明a=an-1an+1(n≥2).
提煉3 數(shù)列中項(xiàng)的最值的求法 (1)根據(jù)數(shù)列與函數(shù)之間的
3、對(duì)應(yīng)關(guān)系,構(gòu)造相應(yīng)的函數(shù)f(n)=an,利用求解函數(shù)最值的方法(多利用函數(shù)的單調(diào)性)進(jìn)行求解,但要注意自變量的取值必須是正整數(shù)的限制.
(2)利用數(shù)列的單調(diào)性求解,利用不等式an+1≥an(或an+1≤an)求解出n的取值范圍,從而確定數(shù)列單調(diào)性的變化,進(jìn)而確定相應(yīng)的最值.
(3)轉(zhuǎn)化為關(guān)于n的不等式組求解,若求數(shù)列{an}的最大項(xiàng),則可解不等式組若求數(shù)列{an}的最小項(xiàng),則可解不等式組求出n的取值范圍之后,再確定取得最值的項(xiàng).
回訪1 等差數(shù)列基本量的運(yùn)算
1.(20xx·全國(guó)卷Ⅰ)已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項(xiàng)和,若S8=4S4,則a10=( )
4、A. B.
C.10 D.12
B ∵公差為1,
∴S8=8a1+×1=8a1+28,S4=4a1+6.
∵S8=4S4,
∴8a1+28=4(4a1+6),解得a1=,
∴a10=a1+9d=+9=.故選B.]
2.(20xx·全國(guó)卷Ⅱ)設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1+a3+a5=3,則S5=( )
A.5 B.7
C.9 D.11
A 法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,
∴S5==5a3=5,故選A.
法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d
5、=1,
∴S5=5a1+d=5(a1+2d)=5,故選A.]
3.(20xx·全國(guó)卷Ⅱ)等差數(shù)列{an}的公差為2,若a2,a4,a8成等比數(shù)列,則{an}的前n項(xiàng)和Sn=( )
A.n(n+1) B.n(n-1)
C. D.
A 由a2,a4,a8成等比數(shù)列,得a=a2a8,即(a1+6)2=(a1+2)(a1+14),∴a1=2,∴Sn=2n+×2=2n+n2-n=n(n+1).]
回訪2 等比數(shù)列基本量的運(yùn)算
4.(20xx·全國(guó)卷Ⅱ)已知等比數(shù)列{an}滿(mǎn)足a1=,a3a5=4(a4-1),則a2=( )
A.2 B.1
C. D.
C 法一:∵a3a5
6、=a,a3a5=4(a4-1),∴a=4(a4-1),
∴a-4a4+4=0,∴a4=2.又∵q3===8,
∴q=2,∴a2=a1q=×2=,故選C.
法二:∵a3a5=4(a4-1),∴a1q2·a1q4=4(a1q3-1),
將a1=代入上式并整理,得q6-16q3+64=0,
解得q=2,
∴a2=a1q=,故選C.]
5.(20xx·全國(guó)卷Ⅰ)在數(shù)列{an}中,a1=2,an+1=2an,Sn為{an}的前n項(xiàng)和.若Sn=126,則n=________.
6 ∵a1=2,an+1=2an,
∴數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
又∵Sn=126,∴=12
7、6,∴n=6.]
熱點(diǎn)題型1 等差、等比數(shù)列的基本運(yùn)算
題型分析:以等差(比)數(shù)列為載體,考查基本量的求解,體現(xiàn)方程思想的應(yīng)用是近幾年高考命題的一個(gè)熱點(diǎn),題型以客觀題為主,難度較小.
(1)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=30,S4=120,設(shè)bn=1+log3an,那么數(shù)列{bn}的前15項(xiàng)和為( )
A.152 B.135
C.80 D.16
(2)設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,Sn為其前n項(xiàng)和.若S1,S2,S4成等比數(shù)列,則a1=( )
A.2 B.-2
C. D.-
(1)B (2)D (1)設(shè)等比數(shù)列{an}的公
8、比為q,
由a1+a3=30,a2+a4=S4-(a1+a3)=90,
所以公比q==3,首項(xiàng)a1==3,
所以an=3n,bn=1+log33n=1+n,
則數(shù)列{bn}是等差數(shù)列,前15項(xiàng)的和為=135,
故選B.
(2)由題意知S1=a1,S2=2a1-1,S4=4a1-6,因?yàn)镾1,S2,S4成等比數(shù)列,
所以S=S1·S4,即(2a1-1)2=a1(4a1-6),解得a1=-,故選D.]
在等差(比)數(shù)列問(wèn)題中最基本的量是首項(xiàng)a1和公差d(公比q),在解題時(shí)往往根據(jù)已知條件建立關(guān)于這兩個(gè)量的方程組,從而求出這兩個(gè)量,那么其他問(wèn)題也就會(huì)迎刃而解.這就是解決等差、等比
9、數(shù)列問(wèn)題的基本量的方法,這其中蘊(yùn)含著方程思想的運(yùn)用.
提醒:應(yīng)用等比數(shù)列前n項(xiàng)和公式時(shí),務(wù)必注意公比q的取值范圍.
變式訓(xùn)練1] (1)已知在數(shù)列{an}中,a1=1,an+1=an+3,Sn為{an}的前n項(xiàng)和,若Sn=51,則n=__________.
(2)(名師押題)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=,a2+a4=,則=________.
(1)6 (2)2n-1 (1)由a1=1,an+1=an+3,得an+1-an=3,
所以數(shù)列{an}是首項(xiàng)為1,公差為3的等差數(shù)列.
由Sn=n+×3=51,
即(3n+17)(n-6)=0,
解得n=6或n=-
10、(舍).
(2)∵q===,
∴a1+a3=a1+a1×=,
解得a1=2,
∴an=2×n-1=,
∴Sn=
=4,
∴==2n-1.]
熱點(diǎn)題型2 等差、等比數(shù)列的基本性質(zhì)
題型分析:該熱點(diǎn)常與數(shù)列中基本量的運(yùn)算綜合考查,熟知等差(比)數(shù)列的基本性質(zhì),可以大大提高解題效率.
(1)(20xx·南昌一模)若等比數(shù)列的各項(xiàng)均為正數(shù),前4項(xiàng)的和為9,積為,則前4項(xiàng)倒數(shù)的和為( )
【導(dǎo)學(xué)號(hào):85952020】
A. B.
C.1 D.2
(2)(20xx·東北三校聯(lián)考)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足S15>0,S16<0,則,,,…,中最大的項(xiàng)為(
11、 )
A. B.
C. D.
(1)D (2)C (1)由題意得
S4==9,所以=.由a1·a1q·a1q2·a1q3=(aq3)2=得aq3=.由等比數(shù)列的性質(zhì)知該數(shù)列前4項(xiàng)倒數(shù)的和為==·==2,故選D.
(2)由S15===15a8>0,S16==16×<0,可得a8>0,a9<0,d<0,故Sn最大為S8.又d<0,所以{an}單調(diào)遞減,因?yàn)榍?項(xiàng)中Sn遞增,所以Sn最大且an取最小正值時(shí)有最大值,即最大,故選C.]
1.若{an},{bn}均是等差數(shù)列,Sn是{an}的前n項(xiàng)和,則{man+kbn},仍為等差數(shù)列,其中m,k為常數(shù).
2.若{an},{bn}
12、均是等比數(shù)列,則{can}(c≠0),{|an|},{an·bn},{manbn}(m為常數(shù)),{a},仍為等比數(shù)列.
3.公比不為1的等比數(shù)列,其相鄰兩項(xiàng)的差也依次成等比數(shù)列,且公比不變,即a2-a1,a3-a2,a4-a3,…成等比數(shù)列,且公比為==q.
4.(1)等比數(shù)列(q≠-1)中連續(xù)k項(xiàng)的和成等比數(shù)列,即Sk,S2k-Sk,S3k-S2k,…成等比數(shù)列,其公比為qk.
(2)等差數(shù)列中連續(xù)k項(xiàng)的和成等差數(shù)列,即Sk,S2k-Sk,S3k-S2k,…成等差數(shù)列,公差為k2d.
5.若A2n-1,B2n-1分別為等差數(shù)列{an},{bn}的前2n-1項(xiàng)的和,則=.
變式訓(xùn)練2
13、] (1)(20xx·沈陽(yáng)模擬)已知各項(xiàng)不為0的等差數(shù)列{an}滿(mǎn)足2a2-a+2a12=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b3b11等于( )
A.16 B.8
C.4 D.2
(2)在等比數(shù)列{an}中,已知a1+a3=8,a5+a7=4,則a9+a11+a13+a15=( )
A.1 B.2
C.3 D.2或4
(1)A (2)C (1)∵{an}是等差數(shù)列,∴a2+a12=2a7,
∴2a2-a+2a12=4a7-a=0.又a7≠0,∴a7=4.
又{bn}是等比數(shù)列,∴b3b11=b=a=16.
(2)∵{an}為等比數(shù)列,∴a5+a7是a
14、1+a3與a9+a11的等比中項(xiàng),∴(a5+a7)2=(a1+a3)(a9+a11),故a9+a11===2.
同理a9+a11是a5+a7與a13+a15的等比中項(xiàng),
∴(a9+a11)2=(a5+a7)(a13+a15),故a13+a15===1.
∴a9+a11+a13+a15=2+1=3.]
熱點(diǎn)題型3 等差、等比數(shù)列的證明
題型分析:該熱點(diǎn)常以數(shù)列的遞推關(guān)系為載體,考查學(xué)生的推理論證能力.
(20xx·全國(guó)丙卷)已知數(shù)列{an}的前n項(xiàng)和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若S5=,求λ.
解] (1)證明:由題意
15、得a1=S1=1+λa1,
故λ≠1,a1=,故a1≠0.1分
由Sn=1+λan,Sn+1=1+λan+1得an+1=λan+1-λan,
即an+1(λ-1)=λan.2分
由a1≠0,λ≠0得an≠0,所以=.3分
因此{(lán)an}是首項(xiàng)為,公比為的等比數(shù)列,4分
于是an=n-1.6分
(2)由(1)得Sn=1-n.8分
由S5=得1-5=,即5=.10分
解得λ=-1.12分
判斷或證明數(shù)列是否為等差或等比數(shù)列,一般是依據(jù)等差數(shù)列、等比數(shù)列的定義,或利用等差中項(xiàng)、等比中項(xiàng)進(jìn)行判斷.
提醒:利用a=an+1·an-1(n≥2)來(lái)證明數(shù)列{an}為等比數(shù)列時(shí),要注意
16、數(shù)列中的各項(xiàng)均不為0.
變式訓(xùn)練3] (20xx·全國(guó)卷Ⅰ)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=λSn-1,其中λ為常數(shù).
(1)證明:an+2-an=λ;
(2)是否存在λ,使得{an}為等差數(shù)列?并說(shuō)明理由.
解] (1)證明:由題設(shè)知anan+1=λSn-1,an+1an+2=λSn+1-1,兩式相減得an+1(an+2-an)=λan+1,2分
由于an+1≠0,所以an+2-an=λ.4分
(2)由題設(shè)知a1=1,a1a2=λS1-1,
可得a2=λ-1.5分
由(1)知,a3=λ+1.6分
令2a2=a1+a3,解得λ=4.7分
故an+2-an=4,由此可得{a2n-1}是首項(xiàng)為1,公差為4的等差數(shù)列,a2n-1=4n-3.9分
{a2n}是首項(xiàng)為3,公差為4的等差數(shù)列,a2n=4n-1.11分
所以an=2n-1,an+1-an=2,
因此存在λ=4,使得數(shù)列{an}為等差數(shù)列.12分