《新編高三數(shù)學(xué)復(fù)習(xí) 第2節(jié) 一元二次不等式及其解法》由會員分享,可在線閱讀,更多相關(guān)《新編高三數(shù)學(xué)復(fù)習(xí) 第2節(jié) 一元二次不等式及其解法(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第2節(jié) 一元二次不等式及其解法
課時訓(xùn)練 練題感 提知能
【選題明細表】
知識點、方法
題號
一元二次不等式的解法
1、3、7、8、12
分式不等式的解法
2
恒成立問題
9、10、11、15
實際應(yīng)用問題
4、16
綜合應(yīng)用
5、6、13、14
A組
一、選擇題
1.(20xx渭南模擬)函數(shù)y=x-x2-3x+4的定義域為( B )
(A)(-∞,-4)∪(1,+∞) (B)(-4,1)
(C)(-4,0)∪(0,1) (D)(-1,4)
解析:由-x2-3x+4>0得x2
2、+3x-4<0,
解得-4125
解析:5x2-a
3、≤0,得-a5≤x≤a5,
而正整數(shù)解是1,2,3,4,
則4≤a5<5,
∴80≤a<125.
故選A.
4.(20xx沈陽模擬)某商場若將進貨單價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準備采用提高售價來增加利潤.已知這種商品每件銷售價提高1元,銷售量就要減少10件.那么要保證每天所賺的利潤在320元以上,銷售價每件應(yīng)定為( C )
(A)12元 (B)16元
(C)12元到16元之間 (D)10元到14元之間
解析:設(shè)銷售價定為每件x元,利潤為y,則:
y=(x-8)[100-10(x-10)],
依題意有,(x-8)[100-10
4、(x-10)]>320,
即x2-28x+192<0,
解得120在R上恒成立”的一個必要不充分條件是( C )
(A)m>14 (B)00 (D)m>1
解析:不等式x2-x+m>0在R上恒成立,
則有Δ=1-4m<0,
∴m>14,
∴它的一個必要不充分條件應(yīng)為m>0.故選C.
6.(20xx莆田二模)不等式(x2-2)log2x>0的解集是( A )
(A)(0,1)∪(2,+∞) (B)(-2,1)∪(2,+∞)
(C)(2,+
5、∞) (D)(-2,2)
解析:原不等式等價于x2-2>0,log2x>0或x2-2<0,log2x<0,
∴x>2或0
6、式的解集為{x|3a0時,f(x)=(x-1)2;若當x∈-2,-12時,n≤f(x)≤m恒成立,則m-n的最小值為 .?
解析:當x<0時,-x>0,f(x)=f(-x)=(x+1)2,
∵x∈-2,-12,
∴f(x)min=f(-1)=0,
f(x)max=f(-2)=1,
∴m≥1,n≤0,m-n≥1.
答案:1
10.(20xx威海質(zhì)檢)不等式ax2+4x+a>1-2x2對一切x∈R恒成立,則實數(shù)a的取值范圍是 .?
解析:由題意知,不等式(a+2)x2+4x+a-1>0
7、對一切x∈R恒成立,
顯然a=-2時,不等式4x-3>0不恒成立,a≠-2時應(yīng)有a+2>0,Δ=16-4(a+2)(a-1)<0,
解得a>2.
答案:(2,+∞)
11.定義在R上的運算:x*y=x(1-y),若不等式(x-y)*(x+y)<1對一切實數(shù)x恒成立,則實數(shù)y的取值范圍是 .?
解析:∵(x-y)*(x+y)=(x-y)(1-x-y)=
x-x2-y+y2<1,
∴-y+y2
8、已知函數(shù)f(x)=ax2+2ax+1的定義域為R.
(1)求a的取值范圍;
(2)若函數(shù)f(x)的最小值為22,解關(guān)于x的不等式x2-x-a2-a<0.
解:(1)∵函數(shù)f(x)=ax2+2ax+1的定義域為R,
∴ax2+2ax+1≥0恒成立,
∴當a=0時,1≥0恒成立.
當a≠0時,則有a>0,Δ=(2a)2-4a≤0,
∴00,
∴當x=-1時,f(x)min=1-a,
由題意得,1-a=22,
∴a=12,
∴不等式x2-x-a2-a<0
9、可化為x2-x-34<0.
解得-12
10、解得-2≤a≤1.
又a≥-1,
∴-1≤a≤1.
綜上所述,所求a的取值范圍為-3≤a≤1.
法二 由已知得x2-2ax+2-a≥0在[-1,+∞)上恒成立,
令g(x)=x2-2ax+2-a,即Δ=4a2-4(2-a)≤0,
或Δ>0,a≤-1,g(-1)≥0,
解得-3≤a≤1.
B組
14.(20xx廈門模擬)對于實數(shù)x,當n≤x
11、5<0可解得32<[x]<152,
又由題意,當n≤x
12、,π]
16.一個服裝廠生產(chǎn)風(fēng)衣,月銷售量x(件)與售價p(元/件)之間的關(guān)系為p=160-2x,生產(chǎn)x件的成本R=500+30x(元).
(1)該廠月產(chǎn)量多大時,月利潤不少于1300元?
(2)當月產(chǎn)量為多少時,可獲得最大利潤,最大利潤是多少?
解:(1)由題意知,月利潤y=px-R,
即y=(160-2x)x-(500+30x)=-2x2+130x-500.
由月利潤不少于1300元,得-2x2+130x-500≥1300.
即x2-65x+900≤0,
解得20≤x≤45.
故該廠月產(chǎn)量在20~45件范圍內(nèi)時,月利潤不少于1300元.
(2)由(1)得,
y=-2x2+130x-500=-2(x-652)2+32252,
由題意知,x為正整數(shù).
故當x=32或33時,y最大為1612.
所以當月產(chǎn)量為32或33件時,可獲最大利潤,最大利潤為1612元.