《新編高考數(shù)學(xué)文科一輪總復(fù)習(xí) 64》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)文科一輪總復(fù)習(xí) 64(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料第4講數(shù)列求和基礎(chǔ)鞏固題組(建議用時(shí):40分鐘)一、填空題1等差數(shù)列an的通項(xiàng)公式為an2n1,其前n項(xiàng)和為Sn,則數(shù)列的前10項(xiàng)的和為_解析因?yàn)閚2,所以的前10項(xiàng)和為10375.答案752若數(shù)列an的通項(xiàng)公式為an2n2n1,則數(shù)列an的前n項(xiàng)和為_解析Sn2n12n2.答案2n12n23數(shù)列an的前n項(xiàng)和為Sn,已知Sn1234(1)n1n,則S17_.解析S171234561516171(23)(45)(67)(1415)(1617)11119.答案94(2014西安質(zhì)檢)已知數(shù)列an滿足a11,an1an2n(nN*),則S2 012_.解析a11,a22,又2.
2、2.a1,a3,a5,成等比數(shù)列;a2,a4,a6,成等比數(shù)列,S2 012a1a2a3a4a5a6a2 011a2 012(a1a3a5a2 011)(a2a4a6a2 012)321 0063.答案321 00635(2014杭州模擬)已知函數(shù)f(x)x22bx過(guò)(1,2)點(diǎn),若數(shù)列的前n項(xiàng)和為Sn,則S2 012的值為_解析由已知得b,f(n)n2n,S2 01211.答案6在等比數(shù)列an中,若a1,a44,則公比q_;|a1|a2|an|_.解析設(shè)等比數(shù)列an的公比為q,則a4a1q3,代入數(shù)據(jù)解得q38,所以q2;等比數(shù)列|an|的公比為|q|2,則|an|2n1,所以|a1|a2|
3、a3|an|(12222n1)(2n1)2n1.答案22n17(2013山西晉中名校聯(lián)合測(cè)試)在數(shù)列an中,a11,an1(1)n(an1),記Sn為an的前n項(xiàng)和,則S2 013_.解析由a11,an1(1)n(an1)可得a11,a22,a31,a40,該數(shù)列是周期為4的數(shù)列,所以S2 013503(a1a2a3a4)a2 013503(2)1 1 005.答案1 0058(2014武漢模擬)等比數(shù)列an的前n項(xiàng)和Sn2n1,則aaa_.解析當(dāng)n1時(shí),a1S11,當(dāng)n2時(shí),anSnSn12n1(2n11)2n1,又a11適合上式an2n1,a4n1.數(shù)列a是以a1為首項(xiàng),以4為公比的等比數(shù)
4、列aaa(4n1)答案(4n1)二、解答題9(2013江西卷)正項(xiàng)數(shù)列an滿足:a(2n1)an2n0.(1)求數(shù)列an的通項(xiàng)公式an;(2)令bn,求數(shù)列bn的前n項(xiàng)和Tn.解(1)由a(2n1)an2n0得(an2n)(an1)0,由于an是正項(xiàng)數(shù)列,則an2n.(2)由(1)知an2n,故bn,Tn.10(2014東山二中月考)設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,且S44S2,a2n2an1.(1)求數(shù)列an的通項(xiàng)公式(2)設(shè)數(shù)列bn的前n項(xiàng)和為Tn,且Tn(為常數(shù))令cnb2n(nN*)求數(shù)列cn的前n項(xiàng)和Rn.解(1)設(shè)公差為d,則由已知,得解得a11,d2,an1(n1)22n1(2)
5、an2n1,由Tn得Tn,即TnTn1(n2)得bn0,bn(n2)cnb2nRnc1c2cn0Rn得Rn() .Rn41n能力提升題組(建議用時(shí):25分鐘)一、填空題1(2014西安模擬)數(shù)列an滿足anan1(nN*),且a11,Sn是數(shù)列an的前n項(xiàng)和,則S21_.解析依題意得anan1an1an2,則an2an,即數(shù)列an中的奇數(shù)項(xiàng)、偶數(shù)項(xiàng)分別相等,則a21a11,S21(a1a2)(a3a4)(a19a20)a2110(a1a2)a211016.答案62(2014長(zhǎng)沙模擬)已知函數(shù)f(n)n2cos n,且anf(n)f(n1),則a1a2a3a100_.解析若n為偶數(shù),則anf(n
6、)f(n1)n2(n1)2(2n1),為首項(xiàng)為a25,公差為4的等差數(shù)列;若n為奇數(shù),則anf(n)f(n1)n2(n1)22n1,為首項(xiàng)為a13,公差為4的等差數(shù)列所以a1a2a3a100(a1a3a99)(a2a4a100)503450(5)4100.答案1003設(shè)f(x),利用倒序相加法,可求得f f f 的值為_解析當(dāng)x1x21時(shí),f(x1)f(x2) 1.設(shè)Sf ff,倒序相加有2Sff10,即S5.答案5二、解答題4已知數(shù)列an滿足a11,a2,且3(1)nan22an2(1)n1(n1,2,3,)(1)求a3,a4,a5,a6的值及數(shù)列an的通項(xiàng)公式;(2)令bna2n1a2n,記數(shù)列bn的前n項(xiàng)和為Tn,求證:Tn3.(1)解分別令n1,2,3,4,可求得a33,a4,a55,a6.當(dāng)n為奇數(shù)時(shí),不妨設(shè)n2m1,mN*,則a2m1a2m12,所以a2m1為等差數(shù)列所以a2m11(m1)22m1,即ann.當(dāng)n為偶數(shù)時(shí),設(shè)n2m,mN*,則a2m2a2m,所以a2m為等比數(shù)列,a2mm1.故an . 綜上所述,an(2)證明bna2n1a2n(2n1),所以Tn135(2n1),所以Tn13(2n3)(2n1).兩式相減,得Tn2(2n1) 2(2n1),所以Tn3.故Tn3.