2019-2020年蘇教版高中數(shù)學(xué)(選修2-2)2.2《直接證明與間接證明》(反證法)word教案.doc
-
資源ID:6157786
資源大?。?span id="h651ikz" class="font-tahoma">22KB
全文頁(yè)數(shù):3頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019-2020年蘇教版高中數(shù)學(xué)(選修2-2)2.2《直接證明與間接證明》(反證法)word教案.doc
2019-2020年蘇教版高中數(shù)學(xué)(選修2-2)2.2直接證明與間接證明(反證法)word教案1教學(xué)目標(biāo):知識(shí)與技能:結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實(shí)例,了解間接證明的一種基本方法反證法;了解反證法的思考過程、特點(diǎn)。過程與方法: 多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;情感、態(tài)度與價(jià)值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣 2.教學(xué)重點(diǎn):了解反證法的思考過程、特點(diǎn)3. 教學(xué)難點(diǎn):反證法的思考過程、特點(diǎn)4教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。5教學(xué)設(shè)想:利用反證法證明不等式的第三步所稱的矛盾結(jié)果,通常是指所推出的結(jié)果與已知公理、定義、定理或已知條件、已證不等式,以及與臨時(shí)假定矛盾等各種情況。 6教學(xué)過程:學(xué)生探究過程:綜合法與分析法(1)、反證法反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。(2)、例子例1、求證:不是有理數(shù)例2、已知,求證:(且)例3、設(shè),求證證明:假設(shè),則有,從而 因?yàn)?,所以,這與題設(shè)條件矛盾,所以,原不等式成立。例4、設(shè)二次函數(shù),求證:中至少有一個(gè)不小于.證明:假設(shè)都小于,則 (1) 另一方面,由絕對(duì)值不等式的性質(zhì),有 (2)(1)、(2)兩式的結(jié)果矛盾,所以假設(shè)不成立,原來的結(jié)論正確注意:諸如本例中的問題,當(dāng)要證明幾個(gè)代數(shù)式中,至少有一個(gè)滿足某個(gè)不等式時(shí),通常采用反證法進(jìn)行。議一議:一般來說,利用反證法證明不等式的第三步所稱的矛盾結(jié)果,通常是指所推出的結(jié)果與已知公理、定義、定理或已知條件、已證不等式,以及與臨時(shí)假定矛盾等各種情況。試根據(jù)上述兩例,討論尋找矛盾的手段、方法有什么特點(diǎn)?例5、設(shè)0 < a, b, c < 1,求證:(1 - a)b, (1 - b)c, (1 - c)a,不可能同時(shí)大于 證:設(shè)(1 - a)b >, (1 - b)c >, (1 - c)a >,則三式相乘:ab < (1 - a)b(1 - b)c(1 - c)a < 又0 < a, b, c < 1 同理:, 以上三式相乘: (1 - a)a(1 - b)b(1 - c)c 與矛盾原式成立例6、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求證:a, b, c > 0 證:設(shè)a < 0, abc > 0, bc < 0 又由a + b + c > 0, 則b + c = -a > 0 ab + bc + ca = a(b + c) + bc < 0 與題設(shè)矛盾 又:若a = 0,則與abc > 0矛盾, 必有a > 0 同理可證:b > 0, c > 0教學(xué)反思:反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。 反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。