2019-2020年新課標教科版3-3選修三3.1《氣體實驗定律》WORD教案1.doc
《2019-2020年新課標教科版3-3選修三3.1《氣體實驗定律》WORD教案1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年新課標教科版3-3選修三3.1《氣體實驗定律》WORD教案1.doc(8頁珍藏版)》請在裝配圖網上搜索。
2019-2020年新課標教科版3-3選修三3.1氣體實驗定律WORD教案1【例1】一個氣泡從水底升到水面時,它的體積增大為原來的3倍,設水的密度為=1103kgm3,大氣壓強p0=1.01105Pa,水底與水面的溫度差不計,求水的深度。取g=10ms2。【分析】氣泡在水底時,泡內氣體的壓強等于水面上大氣壓與水的靜壓強之和。氣泡升到水面上時,泡內氣體的壓強減小為與大氣壓相等,因此其體積增大。由于水底與水面溫度相同,泡內氣體經歷的是一個等溫變化過程,故可用玻意耳定律計算?!窘獯稹吭O氣泡在水底時的體積為V1、壓強為:p1=p0+gh氣泡升到水面時的體積為V2,則V2=3V1,壓強為p2=p0。由玻意耳定律 p1V1=p2V2,即(p0+gh)V1=p03V1得水深【例2】如圖1所示,圓柱形氣缸活塞的橫截面積為S,下表面與水平面的夾角為,重量為G。當大氣壓為p0,為了使活塞下方密閉氣體的體積減速為原來的1/2,必須在活塞上放置重量為多少的一個重物(氣缸壁與活塞間的摩擦不計)【誤解】活塞下方氣體原來的壓強設所加重物重為G,則活塞下方氣體的壓強變?yōu)?氣體體積減為原的1/2,則p2=2p1【正確解答】據(jù)圖2,設活塞下方氣體原來的壓強為p1,由活塞的平衡條件得同理,加上重物G后,活塞下方的氣體壓強變?yōu)闅怏w作等溫變化,根據(jù)玻意耳定律:得 p2=2p1 G=p0S+G【錯因分析與解題指導】【誤解】從壓強角度解題本來也是可以的,但免發(fā)生以上關于壓強計算的錯誤,相似類型的題目從力的平衡入手解題比較好。在分析受力時必須注意由氣體壓強產生的氣體壓力應該垂直于接觸面,氣體壓強乘上接觸面積即為氣體壓力,情況就如【正確解答】所示。【例3】一根兩端開口、粗細均勻的細玻璃管,長L=30cm,豎直插入水銀槽中深h0=10cm處,用手指按住上端,輕輕提出水銀槽,并緩緩倒轉,則此時管內封閉空氣柱多長?已知大氣壓P0=75cmHg。【分析】插入水銀槽中按住上端后,管內封閉了一定質量氣體,空氣柱長L1=L-h0=20cm,壓強p1=p0=75cmHg。輕輕提出水銀槽直立在空氣中時,有一部分水銀會流出,被封閉的空氣柱長度和壓強都會發(fā)生變化。設管中水銀柱長h,被封閉氣體柱長為L2=L-h。倒轉后,水銀柱長度仍為h不變,被封閉氣體柱長度和壓強又發(fā)生了變化。設被封閉氣體柱長L3。所以,管內封閉氣體經歷了三個狀態(tài)。由于“輕輕提出”、“緩緩倒轉”,意味著都可認為溫度不變,因此可由玻意耳定律列式求解?!窘狻扛鶕?jù)上面的分析,畫出示意圖(圖a、b、c)。氣體所經歷的三個狀態(tài)的狀態(tài)參量如下表所示:由于整個過程中氣體的溫度不變,由玻意耳定律:p1V1=p2V2=p3V3即7520S=(75-h)(30-h)S=(75+h)L3S由前兩式得:h2-105h+750=0取合理解 h=7.7cm,代入得【說明】必須注意題中隱含的狀態(tài)(b),如果遺漏了這一點,將無法正確求解?!纠?】容器A的容積是10L,用一根帶閥門的細管,與容器B相連。開始時閥門關閉, A內充有10atm的空氣,B是真空。后打開閥門把A中空氣放一些到B中去,當A內壓強降到4atm時,把閥門關閉,這時B內壓強是3atm。求容器B的容積。假設整個過程中溫度不變?!痉治觥繉α魅肴萜鰾的這部分空氣,它后來的狀態(tài)為壓強pB=3atm,體積VB(容器B的容積)。為了找出這部分空氣的初態(tài),可設想讓容器A中的空氣作等溫膨脹,它的壓強從10atm降為4atm時逸出容器A的空氣便是進入B內的空氣,于是即可確定初態(tài)?!窘獯稹肯纫匀萜鰽中空氣為研究對象,它們等溫膨脹前后的狀態(tài)參量為:VA=10L,pA=10atm;VA=?,pA=4atm。由玻意耳定律 pAVA=pAVA,得如圖1所示。再以逸出容器A的這些空氣為研究對象,它作等溫變化前后的狀態(tài)為:p1=pA=4atm,V1=VA-VA=15Lp1=3atm,V1=VB同理由玻意耳定律 p1V1=p1VB,得所以容器B的容積是20L?!菊f明】本題中研究對象的選取至關重要,可以有多種設想。例如,可先以后來充滿容器A的氣體為研究對象(見圖2)假設它原來在容器A中占的體積為Vx,這部分氣體等溫變化前后的狀態(tài)為:變化前:壓強pA=10atm、體積Vx,變化后:壓強pA=4atm 體積Vx=VA=10L。由 pAVx=pAVx由此可見,進入B中的氣體原來在A內占的體積為VA-Vx=(10-4)L=6L。再以這部分氣體為研究對象,它在等溫變化前后的狀態(tài)為:變化前:壓強p1=10atm,體積V1=6L,變化后:壓強p2=3atm,體積V2=VB由玻意耳定律得容器B的容積為:決定氣體狀態(tài)的參量有溫度、體積、壓強三個物理量,為了研究這三者之間的聯(lián)系,可以先保持其中一個量不變,研究另外兩個量之間的關系,然后再綜合起來。這是一個重要的研究方法,關于氣體性質的研究也正是按照這個思路進行的?!纠?】一容積為32L的氧氣瓶充氣后壓強為1300N/cm2。按規(guī)定當使用到壓強降為100N/cm2時,就要重新充氣。某廠每天要用400L氧氣(在1atm下),一瓶氧氣能用多少天(1atm=10N/cm2)?設使用過程中溫度不變。【分析】這里的研究對象是瓶中的氧氣。由于它原有的壓強(1300N/cm2),使用后的壓強(100N/cm2)、工廠應用時的壓強(10N/cm2)都不同,為了確定使用的天數(shù),可把瓶中原有氧氣和后來的氧氣都轉化為1atm,然后根據(jù)每天的耗氧量即可算出天數(shù)?!窘狻孔鞒鍪疽鈭D如圖1所示。根據(jù)玻意耳定律,由p1V1=p1V1,p2V2=p2V2得所以可用天數(shù)為:【說明】根據(jù)上面的解題思路,也可以作其他設想。如使后來留在瓶中的氧氣和工廠每天耗用的氧氣都變成1300N/cm2的壓強狀態(tài)下,或使原來瓶中的氧氣和工廠每天耗用的氧氣都變成100N/cm2的壓強狀態(tài)下,統(tǒng)一了壓強后,就可由使用前后的體積變化算出使用天數(shù)。上面解出的結果,如果先用文字代入并注意到p1=p2=p0 ,即得或p1V1=p2V2+np0V0這就是說,在等溫變化過程中,當把一定質量的氣體分成兩部分(或幾部分),變化前后pV值之和保持不變(圖2)。這個結果,實質上就是質量守恒在等溫過程中的具體體現(xiàn)。在氣體的分裝和混合等問題中很有用?!纠?】如圖所示,容器A的容積為VA=100L,抽氣機B的最大容積為VB=25L。當活塞向上提時,閥門a打開,閥門b關閉;當活塞向下壓時,閥門a關閉,閥門b打開。若抽氣機每分鐘完成4次抽氣動作,求抽氣機工作多長時間,才能使容器A中氣體的壓強由70cmhg下降到7.5cmHg(設抽氣過程中容器內氣體的溫度不變)?【誤解】設容器中氣體等溫膨脹至體積V2,壓強由70cmHg下降到7.5cmHg,根據(jù)pAVA=p2V2得所需時間【正確解答】設抽氣1次后A中氣體壓強下降到p1,根據(jù)pAVA=p1(VA+VB)得第二次抽氣后,壓強為p2,則同理,第三次抽氣后,抽氣n次后,氣體壓強代入數(shù)據(jù)得:n=10(次)【錯因分析與解題指導】【誤解】的原因是不了解抽氣機的工作過程,認為每次抽入抽氣機的氣體壓強均為7.5cmHg。事實上,每次抽氣過程中被抽氣體體積都是VB,但壓強是逐步減小的,只是最后一次抽氣時,壓強才降低至7.5cmHg。因此,必須逐次對抽氣過程列出玻意耳定律公式,再利用數(shù)學歸納法進行求解。【例7】有開口向上豎直安放的玻璃管,管中在長h的水銀柱下方封閉著一段長L的空氣柱。當玻璃管以加速度a向上作勻加速運動時,空氣柱的長度將變?yōu)槎嗌伲恳阎斕齑髿鈮簽閜0,水銀密度為,重力加速度為g。【誤解】空氣柱原來的壓強為p1=p0+h當玻璃管向上作勻加速動時,空氣柱的壓強為p2,對水銀柱的加速運動有p2S-p0S-mg=ma即 p2=p0+(g+a)h考慮空氣的狀態(tài)變化有p1LS=p2LS【正確解答】空氣柱原來的壓強為p1=p0+gh當玻璃管向上作勻加速運動時,空氣柱的壓強為p2,由水銀柱加速度運動得p2S-p0S-mg=ma p2=p0+(g+a)h氣體作等溫變化p1LS=p2LS 【錯因分析與解題指導】 本題是動力學和氣體狀態(tài)變化結合的綜合題。由于牛頓第二定律公式要求使用國際單位,所以壓強的單位是“Pa”。【誤解】中p1=p0+h,由動力學方程解得p2=p0+(g+a)h,在壓強的表示上,h和(g+a)h顯然不一致,前者以cmHg作單位是錯誤的。所以在解答此類習題時,要特別注意統(tǒng)一單位,高為h的水銀柱的壓強表達為p=gh是解題中一個要點。例8如圖所示,內徑均勻的U型玻璃管豎直放置,截面積為5cm2,管右側上端封閉,左側上端開口,內有用細線栓住的活塞。兩管中分別封入L=11cm的空氣柱A和B,活塞上、下氣體壓強相等為76cm水銀柱產生的壓強,這時兩管內的水銀面的高度差h=6cm,現(xiàn)將活塞用細線緩慢地向上拉,使兩管內水銀面相平。求(1)活塞向上移動的距離是多少?(2)需用多大拉力才能使活塞靜止在這個位置上?分析兩部分氣體是靠壓強來聯(lián)系U型玻璃管要注意水銀面的變化,一端若下降xcm另一端必上升xcm,兩液面高度差為2xcm,由此可知,兩液面相平,B液面下降h/2,A管液面上升h/2在此基礎上考慮活塞移動的距離解答(1)對于B段氣體pB1=76-6=70(cmHg) pB2=pVB1=11S(cm3) VB2=(11+3)S(cm3)根據(jù)玻意耳定律 pB1VB1=pB2VB2對于A段氣體pA1=76(cmHg) pA2=pB2=55(cmHg)VA1=11s(cm3) VA2=LS(cm3)根據(jù)玻意耳定律 pA1VA1=pA2VA2對于活塞的移動距離:h=L+3-L=15.2+3-11=7.2(cm)(2)對于活塞平衡,可知F+pA2S=P0SF=P0S-PS說明U型管粗細相同時,一側水銀面下降hcm,另一側水銀面就要上升hcm,兩部分液面高度差變化于2hcm,若管子粗細不同,應該從體積的變化來考慮,就用幾何關系解決物理問題是常用的方法。例9如圖所示,在水平放置的容器中,有一靜止的活塞把容器分隔成左、右兩部分,左側的容積是1.5L,存有空氣;右側的容積是3L,存有氧氣,大氣壓強是76cmHg。先打開閥門K,當與容器中空氣相連的U形壓強計中左、右水銀面的高度差減為19cm時,關閉閥K。求后來氧氣的質量與原來氧氣的質量之比(系統(tǒng)的溫度不變,壓強計的容積以及摩擦不計)。分析對于密封的一定質量空氣把原來容器中的氧氣做為研究對象容器外(放走的)氧氣體積VV=(V1+V2)-(V1+V2)在后來狀態(tài)下,氧氣密度相同解答對于空氣(溫度不變)對于氧氣(溫度不變)做為研究對象容器外的氧氣(假設仍處于末態(tài))的體積說明:理想氣體的狀態(tài)方程,是對一定量的氣體而言,當它的狀態(tài)發(fā)生變化時,狀態(tài)參量之間的變化規(guī)律。遵守氣態(tài)方程。而兩部分氣體時,要各自分別應用狀態(tài)方程。再通過力學條件,找到這兩部分氣之間壓強或體積的關系。本題容器內的氧氣是屬于變質量問題,也可以把它假想成質量不變來處理。氣體單位體積的分子數(shù)相等,質量和體積成正比,可求得剩余質量(或放出的質量)與原質量之間的比例關系。求物體的質量可以用m=V某個狀態(tài)時的密度和該狀態(tài)時體積的乘積,而氣態(tài)方程也可以寫做密度形式常用此式求某一狀態(tài)時氣體單位體積的分子數(shù),然后再求氣體的質量。例10一橫截面積為S的氣缸水平放置,固定不動,氣缸壁是導熱的,兩個活塞A和B將氣缸分隔為1、2兩氣室,達到平衡時1、2兩氣室體積之比為32,如圖所示,在室溫不變的條件下,緩慢推動活塞A,使之向右移動一段距離d,求活塞B向右移動的距離,不計活塞與氣缸壁之間的摩擦。分析氣缸水平放置,不計活塞與氣缸壁的摩擦,平衡時,兩氣室的壓強必相等。兩氣室各密封一定量的氣體,緩慢推動活塞,故溫度保持不變,分別運用玻意耳定律解題。解因氣缸水平放置,又不計活塞的摩擦,故平衡時兩氣室內的壓強必相等,設初態(tài)時氣室內壓強為p0,氣室1、2的體積分別為V1和V2;在活塞A向右移動d的過程中活塞B向右移動的距離為x;最后氣缸內壓強為p,因溫度不變,分別對氣室1和2的氣體運用玻意耳定律,得氣室1 p0V1=p(V1-Sd+Sx) 氣室2 p0V2=p(V2-Sx) 由、兩式解得說明氣體實驗定律,是研究某一定質量的氣體,狀態(tài)發(fā)生變化時,前、后狀態(tài)參量變化的規(guī)律。切不可理解為兩部分氣體狀態(tài)參量的關系。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 氣體實驗定律 2019 2020 新課 標教科版 選修 3.1 氣體 實驗 定律 WORD 教案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-6153291.html