(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題跟蹤檢測(cè)(五)“導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題”考法面面觀 理(重點(diǎn)生含解析).doc
-
資源ID:6100961
資源大?。?span id="kwe66eu" class="font-tahoma">79.50KB
全文頁(yè)數(shù):9頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題跟蹤檢測(cè)(五)“導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題”考法面面觀 理(重點(diǎn)生含解析).doc
專(zhuān)題跟蹤檢測(cè)(五) “導(dǎo)數(shù)與函數(shù)的零點(diǎn)問(wèn)題”考法面面觀1(2018全國(guó)卷)已知函數(shù)f(x)x3a(x2x1)(1)若a3,求f(x)的單調(diào)區(qū)間;(2)證明:f(x)只有一個(gè)零點(diǎn)解:(1)當(dāng)a3時(shí),f(x)x33x23x3,f(x)x26x3.令f(x)0,解得x32或x32.當(dāng)x(,32)(32,)時(shí),f(x)>0;當(dāng)x(32,32)時(shí),f(x)<0.故f(x)的單調(diào)遞增區(qū)間為(,32),(32,),單調(diào)遞減區(qū)間為(32,32)(2)證明:因?yàn)閤2x1>0,所以f(x)0等價(jià)于3a0.設(shè)g(x)3a,則g(x)0,僅當(dāng)x0時(shí),g(x)0,所以g(x)在(,)上單調(diào)遞增故g(x)至多有一個(gè)零點(diǎn),從而f(x)至多有一個(gè)零點(diǎn)又f(3a1)6a22a62<0,f(3a1)>0,故f(x)有一個(gè)零點(diǎn)綜上,f(x)只有一個(gè)零點(diǎn)2(2018鄭州第一次質(zhì)量預(yù)測(cè))已知函數(shù)f(x)ln x,aR且a0.(1)討論函數(shù)f(x)的單調(diào)性;(2)當(dāng)x時(shí),試判斷函數(shù)g(x)(ln x1)exxm的零點(diǎn)個(gè)數(shù)解:(1)f(x)(x>0),當(dāng)a<0時(shí),f(x)>0恒成立,函數(shù)f(x)在(0,)上單調(diào)遞增;當(dāng)a>0時(shí),由f(x)>0,得x>;由f(x)<0,得0<x<,函數(shù)f(x)在上單調(diào)遞增,在上單調(diào)遞減綜上所述,當(dāng)a<0時(shí),函數(shù)f(x)在(0,)上單調(diào)遞增;當(dāng)a>0時(shí),函數(shù)f(x)在上單調(diào)遞增,在上單調(diào)遞減(2)當(dāng)x時(shí),判斷函數(shù)g(x)(ln x1)exxm的零點(diǎn),即求當(dāng)x時(shí),方程(ln x1)exxm的根令h(x)(ln x1)exx,則h(x)ex1.由(1)知當(dāng)a1時(shí),f(x)ln x1在上單調(diào)遞減,在(1,e)上單調(diào)遞增,當(dāng)x時(shí),f(x)f(1)0.ln x10在x上恒成立h(x)ex101>0,h(x)(ln x1)exx在上單調(diào)遞增h(x)minh2e,h(x)maxe.當(dāng)m<2e或m>e時(shí),函數(shù)g(x)在上沒(méi)有零點(diǎn);當(dāng)2eme時(shí),函數(shù)g(x)在上有一個(gè)零點(diǎn)3(2018貴陽(yáng)模擬)已知函數(shù)f(x)kxln x1(k>0)(1)若函數(shù)f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)k的值;(2)證明:當(dāng)nN*時(shí),1>ln(n1)解:(1)法一:f(x)kxln x1,f(x)k(x>0,k>0),當(dāng)0<x<時(shí),f(x)<0;當(dāng)x>時(shí),f(x)>0.f(x)在0,上單調(diào)遞減,在,上單調(diào)遞增f(x)minfln k,f(x)有且只有一個(gè)零點(diǎn),ln k0,k1.法二:由題意知方程kxln x10僅有一個(gè)實(shí)根,由kxln x10,得k(x>0),令g(x)(x>0),g(x),當(dāng)0<x<1時(shí),g(x)>0;當(dāng)x>1時(shí),g(x)<0.g(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,g(x)maxg(1)1,當(dāng)x時(shí),g(x)0,要使f(x)僅有一個(gè)零點(diǎn),則k1.法三:函數(shù)f(x)有且只有一個(gè)零點(diǎn),即直線ykx與曲線yln x1相切,設(shè)切點(diǎn)為(x0,y0),由yln x1,得y,kx0y01,實(shí)數(shù)k的值為1.(2)證明:由(1)知xln x10,即x1ln x,當(dāng)且僅當(dāng)x1時(shí)取等號(hào),nN*,令x,得>ln,1>lnlnlnln(n1),故1>ln(n1)4.已知函數(shù)f(x)ax3bx2(c3a2b)xd的圖象如圖所示(1)求c,d的值;(2)若函數(shù)f(x)在x2處的切線方程為3xy110,求函數(shù)f(x)的解析式;(3)在(2)的條件下,函數(shù)yf(x)與yf(x)5xm的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍解:函數(shù)f(x)的導(dǎo)函數(shù)為f(x)3ax22bxc3a2b.(1)由圖可知函數(shù)f(x)的圖象過(guò)點(diǎn)(0,3),且f(1)0,得解得(2)由(1)得,f(x)ax3bx2(3a2b)x3,所以f(x)3ax22bx(3a2b)由函數(shù)f(x)在x2處的切線方程為3xy110,得所以解得所以f(x)x36x29x3.(3)由(2)知f(x)x36x29x3,所以f(x)3x212x9.函數(shù)yf(x)與yf(x)5xm的圖象有三個(gè)不同的交點(diǎn),等價(jià)于x36x29x3(x24x3)5xm有三個(gè)不等實(shí)根,等價(jià)于g(x)x37x28xm的圖象與x軸有三個(gè)不同的交點(diǎn)因?yàn)間(x)3x214x8(3x2)(x4),令g(x)0,得x或x4.當(dāng)x變化時(shí),g(x),g(x)的變化情況如表所示:x4(4,)g(x)00g(x)極大值極小值gm,g(4)16m,當(dāng)且僅當(dāng)時(shí),g(x)圖象與x軸有三個(gè)交點(diǎn),解得16<m<.所以m的取值范圍為.5(2018南寧二中、柳州高中二聯(lián))已知函數(shù)f(x)ln xax2(2a)x.(1)討論f(x)的單調(diào)性;(2)設(shè)f(x)的兩個(gè)零點(diǎn)是x1,x2,求證:f<0.解:(1)函數(shù)f(x)ln xax2(2a)x的定義域?yàn)?0,),f(x)2ax(2a),當(dāng)a0時(shí),f(x)>0,則f(x)在(0,)上單調(diào)遞增;當(dāng)a>0時(shí),若x,則f(x)>0,若x,則f(x)<0,則f(x)在上單調(diào)遞增,在上單調(diào)遞減(2)法一:構(gòu)造差函數(shù)法由(1)易知a>0,且f(x)在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè)0<x1<<x2,f<0>x1x2>,故要證f<0,只需證x1x2>即可構(gòu)造函數(shù)F(x)f(x)f,x,F(xiàn)(x)f(x)f(x)f,x,F(xiàn)(x)>0,F(xiàn)(x)在上單調(diào)遞增,F(xiàn)(x)<Ff f 0,即f(x)<f,x,又x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn)且0<x1<<x2,f(x1)f(x2)<f,而x2,x1均大于,x2>x1,x1x2>,得證法二:對(duì)數(shù)平均不等式法易知a>0,且f(x)在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè)0<x1<<x2,f<0>.因?yàn)閒(x)的兩個(gè)零點(diǎn)是x1,x2,所以ln x1ax(2a)x1ln x2ax(2a)x2,所以ln x1ln x22(x1x2)a(xxx1x2),所以a,以下用分析法證明,要證>,即證>,即證>,即證<,只需證<,即證>,根據(jù)對(duì)數(shù)平均不等式,該式子成立,所以f<0.法三:比值(差值)代換法因?yàn)閒(x)的兩個(gè)零點(diǎn)是x1,x2,不妨設(shè)0<x1<x2,所以ln x1ax(2a)x1ln x2ax(2a)x2,所以a(xx)(a2)(x2x1)ln x2ln x1,所以a(x2x1)a2,f(x)2ax2a,fa(x1x2)(a2),令t(t>1),g(t)ln t,則當(dāng)t>1時(shí),g(t)<0,所以g(t)在(1,)上單調(diào)遞減,所以當(dāng)t>1時(shí),g(t)<g(1)0,所以f<0.6(2019屆高三湘東五校聯(lián)考)已知函數(shù)f(x)(ln xk1)x(kR)(1)當(dāng)x>1時(shí),求f(x)的單調(diào)區(qū)間和極值;(2)若對(duì)任意xe,e2,都有f(x)<4ln x成立,求k的取值范圍;(3)若x1x2,且f(x1)f(x2),證明x1x2<e2k.解:(1)f(x)xln xk1ln xk.當(dāng)k0時(shí),因?yàn)閤>1,所以f(x)ln xk>0,所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(1,),無(wú)單調(diào)遞減區(qū)間,無(wú)極值當(dāng)k>0時(shí),令ln xk0,解得xek,當(dāng)1<x<ek時(shí),f(x)<0;當(dāng)x>ek時(shí),f(x)>0.所以函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,ek),單調(diào)遞增區(qū)間是(ek,),在(1,)上的極小值為f(ek)(kk1)ekek,無(wú)極大值(2)由題意,f(x)4ln x<0,即問(wèn)題轉(zhuǎn)化為(x4)ln x(k1)x<0對(duì)任意xe,e2恒成立,即k1>對(duì)任意xe,e2恒成立,令g(x),xe,e2,則g(x).令t(x)4ln xx4,xe,e2,則t(x)1>0,所以t(x)在區(qū)間e,e2上單調(diào)遞增,故t(x)mint(e)4e4e>0,故g(x)>0,所以g(x)在區(qū)間e,e2上單調(diào)遞增,函數(shù)g(x)maxg(e2)2.要使k1>對(duì)任意xe,e2恒成立,只要k1>g(x)max,所以k1>2,解得k>1,所以實(shí)數(shù)k的取值范圍為. (3)證明:法一:因?yàn)閒(x1)f(x2),由(1)知,當(dāng)k>0時(shí),函數(shù)f(x)在區(qū)間(0,ek)上單調(diào)遞減,在區(qū)間(ek,)上單調(diào)遞增,且f(ek1)0.不妨設(shè)x1<x2,當(dāng)x0時(shí),f(x)0,當(dāng)x時(shí),f(x),則0<x1<ek<x2<ek1,要證x1x2<e2k,只需證x2<,即證ek<x2<.因?yàn)閒(x)在區(qū)間(ek,)上單調(diào)遞增,所以只需證f(x2)<f ,又f(x1)f(x2),即證f(x1)<f ,構(gòu)造函數(shù)h(x)f(x)f (ln xk1)x,即h(x)xln x(k1)xe2k,h(x)ln x1(k1)e2k (ln xk),當(dāng)x(0,ek)時(shí),ln xk<0,x2<e2k,即h(x)>0,所以函數(shù)h(x)在區(qū)間(0,ek)上單調(diào)遞增,h(x)<h(ek),而h(ek)f(ek)f 0,故h(x)<0,所以f(x1)<f ,即f(x2)f(x1)<f ,所以x1x2<e2k成立法二:要證x1x2<e2k成立,只要證ln x1ln x2<2k.因?yàn)閤1x2,且f(x1)f(x2),所以(ln x1k1)x1(ln x2k1)x2,即x1ln x1x2ln x2(k1)(x1x2),x1ln x1x2ln x1x2ln x1x2ln x2(k1)(x1x2),即(x1x2)ln x1x2ln(k1)(x1x2),k1ln x1,同理k1ln x2,從而2kln x1ln x22,要證ln x1ln x2<2k,只要證2>0,不妨設(shè)0<x1<x2,則0<t<1,即證2>0,即證>2,即證ln t<2對(duì)t(0,1)恒成立,設(shè)h(t)ln t2,當(dāng)0<t<1時(shí),h(t)>0,所以h(t)在t(0,1)上單調(diào)遞增,h(t)<h(1)0,得證,所以x1x2<e2k.