《高考數(shù)學回歸課本 初等函數(shù)的性質(zhì)教案 舊人教版》由會員分享,可在線閱讀,更多相關《高考數(shù)學回歸課本 初等函數(shù)的性質(zhì)教案 舊人教版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、高考數(shù)學回歸課本教案
第四章 幾個初等函數(shù)的性質(zhì)
一、基礎知識
1.指數(shù)函數(shù)及其性質(zhì):形如y=ax(a>0, a1)的函數(shù)叫做指數(shù)函數(shù),其定義域為R,值域為(0,+∞),當01時,y=ax為增函數(shù),它的圖象恒過定點(0,1)。
2.分數(shù)指數(shù)冪:。
3.對數(shù)函數(shù)及其性質(zhì):形如y=logax(a>0, a1)的函數(shù)叫做對數(shù)函數(shù),其定義域為(0,+∞),值域為R,圖象過定點(1,0)。當01時,y=logax為增函數(shù)。
4.對數(shù)的性質(zhì)(M>0, N>0);
1)ax=Mx=logaM(a>0, a1);
2、
2)loga(MN)= loga M+ loga N;
3)loga()= loga M- loga N;4)loga Mn=n loga M;,
5)loga =loga M;6)aloga M=M; 7) loga b=(a,b,c>0, a, c1).
5. 函數(shù)y=x+(a>0)的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間為和。(請讀者自己用定義證明)
6.連續(xù)函數(shù)的性質(zhì):若a
3、, 1),求證:ab+bc+ca+1>0.
【證明】 設f(x)=(b+c)x+bc+1 (x∈(-1, 1)),則f(x)是關于x的一次函數(shù)。
所以要證原不等式成立,只需證f(-1)>0且f(1)>0(因為-10,
f(1)=b+c+bc+a=(1+b)(1+c)>0,
所以f(a)>0,即ab+bc+ca+1>0.
例2 (柯西不等式)若a1, a2,…,an是不全為0的實數(shù),b1, b2,…,bn∈R,則()·()≥()2,等號當且僅當存在R,使ai=, i=1, 2, …, n時成立。
【證明
4、】 令f(x)= ()x2-2()x+=,
因為>0,且對任意x∈R, f(x)≥0,
所以△=4()-4()()≤0.
展開得()()≥()2。
等號成立等價于f(x)=0有實根,即存在,使ai=, i=1, 2, …, n。
例3 設x, y∈R+, x+y=c, c為常數(shù)且c∈(0, 2],求u=的最小值。
【解】u==xy+≥xy++2·
=xy++2.
令xy=t,則0
5、為++2.
2.指數(shù)和對數(shù)的運算技巧。
例4 設p, q∈R+且滿足log9p= log12q= log16(p+q),求的值。
【解】 令log9p= log12q= log16(p+q)=t,則p=9 t , q=12 t , p+q=16t,
所以9 t +12 t =16 t,即1+
記x=,則1+x=x2,解得
又>0,所以=
例5 對于正整數(shù)a, b, c(a≤b≤c)和實數(shù)x, y, z, w,若ax=by=cz=70w,且,求證:a+b=c.
【證明】 由ax=by=cz=70w取常用對數(shù)得xlga=ylgb=zlgc=wlg70.
所以lga=lg
6、70, lgb=lg70, lgc=lg70,
相加得(lga+lgb+lgc)=lg70,由題設,
所以lga+lgb+lgc=lg70,所以lgabc=lg70.
所以abc=70=2×5×7.
若a=1,則因為xlga=wlg70,所以w=0與題設矛盾,所以a>1.
又a≤b≤c,且a, b, c為70的正約數(shù),所以只有a=2, b=5, c=7.
所以a+b=c.
例6 已知x1, ac1, a1, c1. 且logax+logcx=2logbx,求證c2=(ac)logab.
【證明】 由題設logax+logcx=2logbx,化為以a為底的對數(shù),得
,
因
7、為ac>0, ac1,所以logab=logacc2,所以c2=(ac)logab.
注:指數(shù)與對數(shù)式互化,取對數(shù),換元,換底公式往往是解題的橋梁。
3.指數(shù)與對數(shù)方程的解法。
解此類方程的主要思想是通過指對數(shù)的運算和換元等進行化簡求解。值得注意的是函數(shù)單調(diào)性的應用和未知數(shù)范圍的討論。
例7 解方程:3x+4 x +5 x =6 x.
【解】 方程可化為=1。設f(x)= , 則f(x)在(-∞,+∞)上是減函數(shù),因為f(3)=1,所以方程只有一個解x=3.
例8 解方程組:(其中x, y∈R+).
【解】 兩邊取對數(shù),則原方程組可化為 ①②
把①代入②得(x+y)2
8、lgx=36lgx,所以[(x+y)2-36]lgx=0.
由lgx=0得x=1,由(x+y)2-36=0(x, y∈R+)得x+y=6,
代入①得lgx=2lgy,即x=y2,所以y2+y-6=0.
又y>0,所以y=2, x=4.
所以方程組的解為 .
例9 已知a>0, a1,試求使方程loga(x-ak)=loga2(x2-a2)有解的k的取值范圍。
【解】由對數(shù)性質(zhì)知,原方程的解x應滿足.①②③
若①、②同時成立,則③必成立,
故只需解.
由①可得2kx=a(1+k2), ④
當k=0時,④無解;當k0時,④的解是x=,代入②得>k.
若k<0,則k2>1
9、,所以k<-1;若k>0,則k2<1,所以0
10、a<0,則a 取值范圍是_________。
5.命題p: 函數(shù)y=log2在[2,+∞)上是增函數(shù);命題q: 函數(shù)y=log2(ax2-4x+1)的值域為R,則p是q的_________條件。
6.若00且a1,比較大?。簗loga(1-b)|_________|loga(1+b).
7.已知f(x)=2+log3x, x∈[1, 3],則函數(shù)y=[f(x)]2+f(x2)的值域為_________。
8.若x=,則與x最接近的整數(shù)是_________。
9.函數(shù)的單調(diào)遞增區(qū)間是_________。
10.函數(shù)f(x)=的值域為_________。
11.設
11、f(x)=lg[1+2x+3 x +…+(n-1) x +n x·a],其中n為給定正整數(shù), n≥2, a∈R.若f(x)在x∈(-∞,1]時有意義,求a的取值范圍。
12.當a為何值時,方程=2有一解,二解,無解?
四、高考水平訓練題
1.函數(shù)f(x)=+lg(x2-1)的定義域是_________.
2.已知不等式x2-logmx<0在x∈時恒成立,則m的取值范圍是_________.
3.若x∈{x|log2x=2-x},則x2, x, 1從大到小排列是_________.
4. 若f(x)=ln,則使f(a)+f(b)=_________.
5. 命題p: 函數(shù)y=l
12、og2在[2,+∞)上是增函數(shù);命題q:函數(shù)y=log2(ax2-4x+1)的值域為R,則p是q的_________條件.
6.若00且a1,比較大?。簗loga(1-b)| _________|loga(1+b)|.
7.已知f(x)=2+log3x, x∈[1, 3],則函數(shù)y=[f(x)]2+f(x2)的值域為_________.
8.若x=,則與x最接近的整數(shù)是_________.
9.函數(shù)y=的單調(diào)遞增區(qū)間是_________.
10.函數(shù)f(x)=的值域為_________.
11.設f(x)=lg[1+2x+3 x +…+(n-1) x +n x
13、·a],其中n為給定正整數(shù),n≥2,a∈R。若f(x) 在x∈(-∞,1]時有意義,求a的取值范圍。
12.當a為何值時,方程=2有一解,二解,無解?
四、高考水平訓練題
1.函數(shù)f(x)=+lg(x2-1)的定義域是__________.
2.已知不等式x2-logmx<0在x∈時恒成立,則m的取值范圍是 ________.
3.若x∈{x|log2x=2-x},則x2, x, 1從大到小排列是________.
4.若f(x)=ln,則使f(a)+f(b)=成立的a, b的取值范圍是________.
5.已知an=logn(n+1),設,其中p, q為整數(shù),且(p ,q)=
14、1,則p·q的值為_________.
6.已知x>10, y>10, xy=1000,則(lgx)·(lgy)的取值范圍是________.
7.若方程lg(kx)=2lg(x+1)只有一個實數(shù)解,則實數(shù)k的取值范圍是________.
8.函數(shù)f(x)=的定義域為R,若關于x的方程f2(x)+bf(x)+c=0有7個不同的實數(shù)解,則b, c應滿足的充要條件是________.
(1)b<0且c>0;(2)b>0且c<0;(3)b<0且c=0;(4)b≥0且c=0。
9.已知f(x)=x, F(x)=f(x+t)-f(x-t)(t0),則F(x)是________函數(shù)(填奇偶性)
15、.
10.已知f(x)=lg,若=1,=2,其中|a|<1, |b|<1,則f(a)+f(b)=________.
11.設a∈R,試討論關于x的方程lg(x-1)+lg(3-x)=lg(a-x)的實數(shù)解的個數(shù)。
12.設f(x)=|lgx|,實數(shù)a, b滿足00且a1, f(x)=loga(x+)(x≥1),(1)求f(x)的反函數(shù)f-1(x);(2)若f-1(n)<(n∈N+),求a的取值范圍。
五、聯(lián)賽一試水平訓練題
1.如果log
16、2[log(log2x)]= log3[log(log3x)]= log5[log(log5z)]=0,那么將x, y, z從小到大排列為___________.
2.設對任意實數(shù)x0> x1> x2> x3>0,都有l(wèi)og1993+ log1993+ log1993> klog1993恒成立,則k的最大值為___________.
3.實數(shù)x, y滿足4x2-5xy+4y2=5,設S=x2+y2,則的值為___________.
4.已知0
17、na從小到大排列為___________.
5.用[x]表示不超過x的最大整數(shù),則方程lg2x-[lgx]-2=0的實根個數(shù)是___________.
6.設a=lgz+lg[x(yz)-1+1], b=lgx-1+lg[xyz+1], c=lgy+lg[(xyz)-1+1],記a, b, c中的最大數(shù)為M,則M的最小值為___________.
7.若f(x)(x∈R)是周期為2的偶函數(shù),當x∈[0,1]時,f(x)=,則,由小到大排列為___________.
8.不等式+2>0的解集為___________.
9.已知a>1, b>1,且lg(a+b)=lga+lgb,求lg(
18、a-1)+lg(b-1).
10.(1)試畫出由方程所確定的函數(shù)y=f(x)圖象。
(2)若函數(shù)y=ax+與y=f(x)的圖象恰有一個公共點,求a的取值范圍。
11.對于任意n∈N+(n>1),試證明:[]+[]+…+[]=[log2n]+[log3n]+…+[lognn]。
六、聯(lián)賽二試水平訓練題
1.設x, y, z∈R+且x+y+z=1,求u=的最小值。
2.當a為何值時,不等式log·log5(x2+ax+6)+loga3≥0有且只有一個解(a>1且a1)。
3.f(x)是定義在(1,+∞)上且在(1,+∞)中取值的函數(shù),滿足條件;對于任何x, y>1及u, v>0, f
19、(xuyv)≤[f(x)][f(y)]①都成立,試確定所有這樣的函數(shù)f(x).
4. 求所有函數(shù)f:R→R,使得xf(x)-yf(x)=(x-y)f(x+y)①成立。
5.設m≥14是一個整數(shù),函數(shù)f:N→N定義如下:
f(n)=,
求出所有的m,使得f(1995)=1995.
6.求定義在有理數(shù)集上且滿足下列條件的所有函數(shù)f:
f(x+y)=f(x)+f(y)+f(x)·f(y), x, y∈Q.
7.是否存在函數(shù)f(n),將自然數(shù)集N映為自身,且對每個n>1, f(n)=f(f(n-1))+f(f(n+1))都成立。
8.設p, q是任意自然數(shù),求證:存在這樣的f(x) ∈Z(x)(表示整系數(shù)多項式集合),使對x軸上的某個長為的開區(qū)間中的每一個數(shù)x, 有
9.設α,β為實數(shù),求所有f: R+→R,使得對任意的x,y∈R+, f(x)f(y)=y2·f成立。