初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第6講 轉(zhuǎn)化—可化為一元二次方程的方程
-
資源ID:58347301
資源大?。?span id="eqqtsrm" class="font-tahoma">471.50KB
全文頁數(shù):7頁
- 資源格式: DOC
下載積分:20積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
初中數(shù)學(xué)競賽輔導(dǎo)講義及習(xí)題解答 第6講 轉(zhuǎn)化—可化為一元二次方程的方程
第六講 轉(zhuǎn)化可化為一元二次方程的方程 數(shù)學(xué)(家)特有的思維方式是什么?若從量的方面考慮,通常運用符號進行形式化抽象,在一個概念和公理體系內(nèi)實施推理計算,若從“轉(zhuǎn)化”這個側(cè)面又該如何回答?匈牙利女?dāng)?shù)學(xué)家路莎·彼得在無窮的玩藝一書中寫道:“作為數(shù)學(xué)家的思維來說是很典型的,他們往往不對問題進行正面攻擊,而是不斷地將它變形,直至把它轉(zhuǎn)化為已經(jīng)能夠解決的問題”轉(zhuǎn)化與化歸是解分式方程和高次方程(次數(shù)高于二次的整式方程)的基本思想解分式方程,通過去分母和換元;解高次方程,利用因式分解和換元,轉(zhuǎn)化為一元二次方程或一元一次方程去求解【例題求解】【例1】 若,則的值為 思路點撥 視為整體,令,用換元法求出即可【例2】 若方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( ) A B C D 思路點撥 通過平方有理化,將無理方程根的個數(shù)討論轉(zhuǎn)化為一元二次方程實根個數(shù)的討論,但需注意注的隱含制約注:轉(zhuǎn)化與化歸是一種重要的數(shù)學(xué)思想,在數(shù)學(xué)學(xué)習(xí)與解數(shù)學(xué)題中,我們常常用到下列不同途徑的轉(zhuǎn)化:實際問題轉(zhuǎn)化大為數(shù)學(xué)問題,數(shù)與形的轉(zhuǎn)化,常量與變量的轉(zhuǎn)化,一般與特殊的轉(zhuǎn)化等 解下列方程: (1); (2); (3) 按照常規(guī)思路求解繁難,應(yīng)恰當(dāng)轉(zhuǎn)化,對于(1),利用倒數(shù)關(guān)系換元;對于(2),從受到啟示;對于(3),設(shè),則可導(dǎo)出、的結(jié)果注:換元是建立在觀察基礎(chǔ)上的,換元不拘泥于一元代換,可根據(jù)問題的特點,進行多元代換【例4】 若關(guān)于的方程只有一個解(相等的解也算作一個),試求的值與方程的解 思路點撥 先將分式方程轉(zhuǎn)化為整式方程,把分式方程解的討論轉(zhuǎn)化為整式方程的解的討論,“只有一個解”內(nèi)涵豐富,在全面分析的基礎(chǔ)上求出的值注:分式方程轉(zhuǎn)化為整式方程不一定是等價轉(zhuǎn)化,有可能產(chǎn)生增根,分式方程只有一個解,可能足轉(zhuǎn)化后所得的整式方程只有一個解,也可能是轉(zhuǎn)化后的整式方程有兩個解,而其中一個是原方程的增根,故分式方程的解的討論,要運用判別式、增根等知識全面分析【例5】 已知關(guān)于的方程有兩個根相等,求的值思路點撥 通過換元可得到兩個關(guān)于的含參數(shù)的一元二次方程,利用判別式求出的值注:運用根的判別式延伸到分式方程、高次方程根的情況的探討,是近年中考、競賽中一類新題型,盡管這種探討仍以一元二次方程的根為基礎(chǔ),但對轉(zhuǎn)換能力、思維周密提出了較高要求 學(xué)歷訓(xùn)練1若關(guān)于的方程有增根,則的值為 ;若關(guān)于的方程 曾一1的解為正數(shù),則的取值范圍是 2解方程得 3已知方程有一個根是2,則= 4方程的全體實數(shù)根的積為( ) A60 B一60 C10 D一105解關(guān)于的方程不會產(chǎn)生增根,則是的值是( ) A2 B1 C不為2或一2 D無法確定6已知實數(shù)滿足,那么的值為( ) A1或一2 B一1或2 C1 D一2 7(1)如表,方程1、方程2、方程3、,是按照一定規(guī)律排列的一列方程,解方程1,并將它的解填在表中的空格處; (2)若方程()的解是=6,=10,求、的值該方程是不是(1)中所給的一列方程中的一個方程?如果是,它是第幾個方程? (3)請寫出這列方程中的第個方程和它的解,并驗證所寫出的解適合第個方程序號方 程方程的解1= = 2=4=63 =5=88解下列方程:(1) ;(2);(3);(4)9已知關(guān)于的方程,其中為實數(shù),當(dāng)m為何值時,方程恰有三個互不相等的實數(shù)根?求出這三個實數(shù)根 10方程的解是 11解方程得 12方程的解是 13若關(guān)于的方程恰有兩個不同的實數(shù)解,則實數(shù)的取值范圍是 14解下列方程: (1); (2);(3); (4)15當(dāng)取何值時,方程有負(fù)數(shù)解? 16已知,求的值 17已知:如圖,四邊形ABCD為菱形,AF上AD交BD于E點,交BC于點F(1)求證:AD2= DE×DB;(2)過點E作EGAE交AB于點G,若線段BE、DE(BE<DE)的長為方程(m>0)的兩個根,且菱形ABCD的面積為,求EG的長 參考答案 7