2019年高考數(shù)學(xué)總復(fù)習(xí) 6.3.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件 理.ppt
《2019年高考數(shù)學(xué)總復(fù)習(xí) 6.3.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件 理.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)總復(fù)習(xí) 6.3.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件 理.ppt(39頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
6 3統(tǒng)計(jì)與概率大題 1 統(tǒng)計(jì)圖表 1 在頻率分布直方圖中 各小矩形的面積表示相應(yīng)各組的頻率 各小矩形的高 各小矩形面積之和等于1 2 莖葉圖 當(dāng)數(shù)據(jù)是兩位數(shù)時(shí) 用中間的數(shù)字表示十位數(shù) 兩邊的數(shù)字表示個(gè)位數(shù) 當(dāng)數(shù)據(jù)是三位數(shù) 前兩位相對比較集中時(shí) 常以前兩位為莖 第三位 個(gè)位 為葉 其余類推 2 樣本的數(shù)字特征 1 眾數(shù) 是指出現(xiàn)次數(shù)最多的數(shù) 體現(xiàn)在頻率分布直方圖中 是指高度最高的小矩形的寬的中點(diǎn)的橫坐標(biāo) 2 中位數(shù)是指從左往右小矩形的面積之和為0 5處的橫坐標(biāo) 5 平均數(shù)反映了數(shù)據(jù)取值的平均水平 標(biāo)準(zhǔn)差 方差描述了一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小 標(biāo)準(zhǔn)差 方差越大 數(shù)據(jù)的離散程度越大 越不穩(wěn)定 3 變量間的相關(guān)關(guān)系 1 如果散點(diǎn)圖中的點(diǎn)從整體上看大致分布在一條直線的附近 那么我們說變量x和y具有線性相關(guān)關(guān)系 2 線性回歸方程 若變量x與y具有線性相關(guān)關(guān)系 有n個(gè)樣本數(shù)據(jù) 正相關(guān) 當(dāng)r 0時(shí) 表示兩個(gè)變量負(fù)相關(guān) r 越接近1 表明兩個(gè)變量相關(guān)性越強(qiáng) 當(dāng) r 接近0時(shí) 表明兩個(gè)變量幾乎不存在相關(guān)性 4 獨(dú)立性檢驗(yàn)對于取值分別是 x1 x2 和 y1 y2 的分類變量X和Y 其樣本頻數(shù)列聯(lián)表是 5 概率的基本性質(zhì)及常見概率的計(jì)算 1 隨機(jī)事件的概率 0 P A 1 必然事件的概率是1 不可能事件的概率是0 2 若事件A B互斥 則P A B P A P B 3 若事件A B對立 則P A B P A P B 1 4 兩種常見的概率模型 古典概型的特點(diǎn) 有限性 等可能性 6 相互獨(dú)立事件同時(shí)發(fā)生的概率 P AB P A P B 7 超幾何分布中的概率 在含有M件次品的N件產(chǎn)品中 任取n件 其中恰有X件次品 則P X k k 0 1 2 m 其中m min M n 且n N M N n M N N 6 二項(xiàng)分布一般地 在n次獨(dú)立重復(fù)試驗(yàn)中 事件A發(fā)生的次數(shù)為X 設(shè)每次試驗(yàn)中事件A發(fā)生的概率為p 則P X k pkqn k 其中0 p 1 p q 1 k 0 1 2 n 稱X服從參數(shù)為n p的二項(xiàng)分布 記作X B n p 且E X np D X np 1 p 7 離散型隨機(jī)變量的分布列 期望 方差 1 設(shè)離散型隨機(jī)變量X可能取的不同值為x1 x2 xi xn X取每一個(gè)值xi i 1 2 n 的概率P X xi pi 則稱下表 為離散型隨機(jī)變量X的分布列 2 E X x1p1 x2p2 xipi xnpn為X的均值或數(shù)學(xué)期望 3 D X x1 E X 2 p1 x2 E X 2 p2 xi E X 2 pi xn E X 2 pn叫做隨機(jī)變量X的方差 4 均值與方差的性質(zhì) E aX b aE X b E E E D aX b a2D X 6 3 1統(tǒng)計(jì)與統(tǒng)計(jì)案例 考向一 考向二 考向三 相關(guān)關(guān)系的判斷及回歸分析例1 2018全國 理18 下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額y 單位 億元 的折線圖 考向一 考向二 考向三 為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額 建立了y與時(shí)間變量t的兩個(gè)線性回歸模型 根據(jù)2000年至2016年的數(shù)據(jù) 時(shí)間變量t的值依次為1 2 17 建立模型 30 4 13 5t 根據(jù)2010年至2016年的數(shù)據(jù) 時(shí)間變量t的值依次為1 2 7 建立模型 y 99 17 5t 1 分別利用這兩個(gè)模型 求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值 2 你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠 并說明理由 考向一 考向二 考向三 解 1 利用模型 該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為 2 利用模型 得到的預(yù)測值更可靠 理由如下 考向一 考向二 考向三 i 從折線圖可以看出 2000年至2016年的數(shù)據(jù)對應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y 30 4 13 5t上下 這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型 不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢 2010年相對2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加 2010年至2016年的數(shù)據(jù)對應(yīng)的點(diǎn)位于一條直線的附近 這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢 利用2010年至2016年的數(shù)據(jù)建立的線性模型 99 17 5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢 因此利用模型 得到的預(yù)測值更可靠 考向一 考向二 考向三 解題心得在求兩變量相關(guān)系數(shù)和兩變量的回歸方程時(shí) 由于r和的公式比較復(fù)雜 求它的值計(jì)算量比較大 為了計(jì)算準(zhǔn)確 可將這個(gè)量分成幾個(gè)部分分別計(jì)算 這樣等同于分散難點(diǎn) 各個(gè)攻破 提高了計(jì)算的準(zhǔn)確度 ii 從計(jì)算結(jié)果看 相對于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元 由模型 得到的預(yù)測值226 1億元的增幅明顯偏低 而利用模型 得到的預(yù)測值的增幅比較合理 說明利用模型 得到的預(yù)測值更可靠 以上給出了2種理由 答出其中任意一種或其他合理理由均可得分 考向一 考向二 考向三 對點(diǎn)訓(xùn)練1下表是某校高三一次月考5個(gè)班級的數(shù)學(xué) 物理的平均成績 1 一般來說 學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系 根據(jù)上表提供的數(shù)據(jù) 求兩個(gè)變量x y的線性回歸方程 2 從以上5個(gè)班級中任選兩個(gè)參加某項(xiàng)活動(dòng) 設(shè)選出的兩個(gè)班級中數(shù)學(xué)平均分在115分以上的個(gè)數(shù)為X 求X的分布列和數(shù)學(xué)期望 考向一 考向二 考向三 考向一 考向二 考向三 獨(dú)立性檢驗(yàn)的綜合問題例2海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新 舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比 收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱 測量各箱水產(chǎn)品的產(chǎn)量 單位 kg 其頻率分布直方圖如下 舊養(yǎng)殖法新養(yǎng)殖法 考向一 考向二 考向三 1 設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立 記A表示事件 舊養(yǎng)殖法的箱產(chǎn)量低于50kg 新養(yǎng)殖法的箱產(chǎn)量不低于50kg 估計(jì)A的概率 2 填寫下面列聯(lián)表 并根據(jù)列聯(lián)表判斷是否有99 的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān) 3 根據(jù)箱產(chǎn)量的頻率分布直方圖 求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值 精確到0 01 考向一 考向二 考向三 解 1 記B表示事件 舊養(yǎng)殖法的箱產(chǎn)量低于50kg C表示事件 新養(yǎng)殖法的箱產(chǎn)量不低于50kg 由題意知P A P BC P B P C 舊養(yǎng)殖法的箱產(chǎn)量低于50kg的頻率為 0 012 0 014 0 024 0 034 0 040 5 0 62 故P B 的估計(jì)值為0 62 新養(yǎng)殖法的箱產(chǎn)量不低于50kg的頻率為 0 068 0 046 0 010 0 008 5 0 66 故P C 的估計(jì)值為0 66 因此 事件A的概率估計(jì)值為0 62 0 66 0 4092 考向一 考向二 考向三 2 根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表 由于15 705 6 635 故有99 的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān) 考向一 考向二 考向三 3 因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中 箱產(chǎn)量低于50kg的直方圖面積為 0 004 0 020 0 044 5 0 340 5 故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值為 解題心得有關(guān)獨(dú)立性檢驗(yàn)的問題解題步驟 1 作出2 2列聯(lián)表 2 計(jì)算隨機(jī)變量K2的值 3 查臨界值 檢驗(yàn)作答 考向一 考向二 考向三 對點(diǎn)訓(xùn)練2 2018全國 理18 某工廠為提高生產(chǎn)效率 開展技術(shù)創(chuàng)新活動(dòng) 提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式 為比較兩種生產(chǎn)方式的效率 選取40名工人 將他們隨機(jī)分成兩組 每組20人 第一組工人用第一種生產(chǎn)方式 第二組工人用第二種生產(chǎn)方式 根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間 單位 min 繪制了如下莖葉圖 1 根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高 并說明理由 考向一 考向二 考向三 2 求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)m 并將完成生產(chǎn)任務(wù)所需時(shí)間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表 3 根據(jù) 2 中的列聯(lián)表 能否有99 的把握認(rèn)為兩種生產(chǎn)方式的效率有差異 考向一 考向二 考向三 解 1 第二種生產(chǎn)方式的效率更高 理由如下 由莖葉圖可知 用第一種生產(chǎn)方式的工人中 有75 的工人完成生產(chǎn)任務(wù)所需時(shí)間至少80分鐘 用第二種生產(chǎn)方式的工人中 有75 的工人完成生產(chǎn)任務(wù)所需時(shí)間至多79分鐘 因此第二種生產(chǎn)方式的效率更高 由莖葉圖可知 用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為85 5分鐘 用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為73 5分鐘 因此第二種生產(chǎn)方式的效率更高 由莖葉圖可知 用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間高于80分鐘 用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間低于80分鐘 因此第二種生產(chǎn)方式的效率更高 考向一 考向二 考向三 由莖葉圖可知 用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖8上的最多 關(guān)于莖8大致呈對稱分布 用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖7上的最多 關(guān)于莖7大致呈對稱分布 又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布的區(qū)間相同 故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間更少 因此第二種生產(chǎn)方式的效率更高 以上給出了4種理由 考生答出其中任意一種或其他合理理由均可得分 考向一 考向二 考向三 列聯(lián)表如下 所以有99 的把握認(rèn)為兩種生產(chǎn)方式的效率有差異 考向一 考向二 考向三 依據(jù)統(tǒng)計(jì)數(shù)據(jù)求事件發(fā)生的概率例3某公司為了解用戶對其產(chǎn)品的滿意度 從A B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶 得到用戶對產(chǎn)品的滿意度評分如下 A地區(qū) 6273819295857464537678869566977888827689B地區(qū) 7383625191465373648293486581745654766579 1 根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖 并通過莖葉圖比較兩地區(qū)滿意度評分的平均值及分散程度 不要求計(jì)算出具體值 給出結(jié)論即可 考向一 考向二 考向三 2 根據(jù)用戶滿意度評分 將用戶的滿意度從低到高分為三個(gè)等級 記事件C A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級 假設(shè)兩地區(qū)用戶的評價(jià)結(jié)果相互獨(dú)立 根據(jù)所給數(shù)據(jù) 以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率 求C的概率 考向一 考向二 考向三 解 1 兩地區(qū)用戶滿意度評分的莖葉圖如下 通過莖葉圖可以看出 A地區(qū)用戶滿意度評分的平均值高于B地區(qū)用戶滿意度評分的平均值 A地區(qū)用戶滿意度評分比較集中 B地區(qū)用戶滿意度評分比較分散 考向一 考向二 考向三 2 記CA1表示事件 A地區(qū)用戶的滿意度等級為滿意或非常滿意 CA2表示事件 A地區(qū)用戶的滿意度等級為非常滿意 CB1表示事件 B地區(qū)用戶的滿意度等級為不滿意 CB2表示事件 B地區(qū)用戶的滿意度等級為滿意 則CA1與CB1獨(dú)立 CA2與CB2獨(dú)立 CB1與CB2互斥 C CB1CA1 CB2CA2 P C P CB1CA1 CB2CA2 P CB1CA1 P CB2CA2 P CB1 P CA1 P CB2 P CA2 考向一 考向二 考向三 解題心得1 直接法 正確分析復(fù)雜事件的構(gòu)成 將復(fù)雜事件轉(zhuǎn)化為幾個(gè)彼此互斥的事件的和事件或幾個(gè)相互獨(dú)立事件同時(shí)發(fā)生的事件或一獨(dú)立重復(fù)試驗(yàn)問題 然后用相應(yīng)概率公式求解 2 間接法 當(dāng)復(fù)雜事件正面情況比較多 反面情況比較少 則可利用其對立事件進(jìn)行求解 即 正難則反 對于 至少 至多 等問題往往也用這種方法求解 考向一 考向二 考向三 對點(diǎn)訓(xùn)練3A B C三個(gè)班共有100名學(xué)生 為調(diào)查他們的體育鍛煉情況 通過分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間 數(shù)據(jù)如下表 單位 小時(shí) 1 試估計(jì)C班的學(xué)生人數(shù) 2 從A班和C班抽出的學(xué)生中 各隨機(jī)選取一人 A班選出的人記為甲 C班選出的人記為乙 假設(shè)所有學(xué)生的鍛煉時(shí)間相互獨(dú)立 求該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長的概率 考向一 考向二 考向三 3 再從A B C三個(gè)班中各隨機(jī)抽取一名學(xué)生 他們該周的鍛煉時(shí)間分別是7 9 8 25 單位 小時(shí) 這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為 1 表格中數(shù)據(jù)的平均數(shù)記為 0 試判斷 0和 1的大小 結(jié)論不要求證明 解 1 由題意知 抽出的20名學(xué)生中 來自C班的學(xué)生有8名 根據(jù)分層抽樣方法 C班的學(xué)生人數(shù)估計(jì)為100 40 2 設(shè)事件Ai為 甲是現(xiàn)有樣本中A班的第i個(gè)人 i 1 2 5 事件Cj為 乙是現(xiàn)有樣本中C班的第j個(gè)人 j 1 2 8 考向一 考向二 考向三 設(shè)事件E為 該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長 由題意知 E A1C1 A1C2 A2C1 A2C2 A2C3 A3C1 A3C2 A3C3 A4C1 A4C2 A4C3 A5C1 A5C2 A5C3 A5C4 因此P E P A1C1 P A1C2 P A2C1 P A2C2 P A2C3 P A3C1 P A3C2 P A3C3 P A4C1 P A4C2 P A4C3 P A5C1 P A5C2 P A5C3 P A5C4 3 1 0- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)總復(fù)習(xí) 6.3.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件 2019 年高 數(shù)學(xué) 復(fù)習(xí) 6.3 統(tǒng)計(jì) 案例 課件
鏈接地址:http://m.appdesigncorp.com/p-5701912.html