《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 計數(shù)原理與概率 第60講 離散型隨機(jī)變量及其分布列課件》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 計數(shù)原理與概率 第60講 離散型隨機(jī)變量及其分布列課件(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、計數(shù)原理與概率、隨機(jī)變量及其分布第第 九九 章章第第6060講離散型隨機(jī)變量及其分布列講離散型隨機(jī)變量及其分布列考綱要求考情分析命題趨勢1.理解取有限個值的離散型隨機(jī)變量及其分布列的概念,了解分布列對于刻畫隨機(jī)現(xiàn)象的重要性2理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡單的應(yīng)用.2016全國卷,192015重慶卷,172015四川卷,17利用排列、組合知識求解離散型隨機(jī)變量的分布列,運(yùn)用概率知識解決實際問題.分值:5分板板 塊塊 一一板板 塊塊 二二板板 塊塊 三三欄目導(dǎo)航 1隨機(jī)變量 隨著試驗結(jié)果變化_的變量,常用字母X,Y,表示 2離散型隨機(jī)變量 所有取值可以_的隨機(jī)變量而變化 一一列出 P(Xx
2、i)pi,i1,2,n pi0(i1,2,n) 1p P(X1) minM,n 1思維辨析(在括號內(nèi)打“”或“”) (1)隨機(jī)試驗所有可能的結(jié)果是明確的,并且不止一個() (2)離散型隨機(jī)變量的所有取值有時無法一一列出() (3)離散型隨機(jī)變量的分布列中pi0(i1,2,n)() (4)離散型隨機(jī)變量在某一范圍內(nèi)取值的概率等于它取這個范圍內(nèi)各個值的概率之和() 解析 (1)正確根據(jù)隨機(jī)試驗的條件可知正確 (2)錯誤離散型隨機(jī)變量的所有取值可以一一列出 (3)錯誤離散型隨機(jī)變量的分布列中pi0(i1,2,3,n) (4)正確由離散型隨機(jī)變量的分布列的性質(zhì)可知該命題正確 2投擲甲、乙兩顆骰子,所得
3、點(diǎn)數(shù)之和為X,那么X4表示的事件是() A一顆是3點(diǎn),一顆是1點(diǎn) B兩顆都是2點(diǎn) C甲是3點(diǎn),乙是1點(diǎn)或甲是1點(diǎn),乙是3點(diǎn)或兩顆都是2點(diǎn) D以上答案都不對 解析 甲是3點(diǎn),乙是1點(diǎn)與甲是1點(diǎn),乙是3點(diǎn)是試驗的兩個不同結(jié)果,故選CC C 510件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率是_. (1)利用分布列中各概率之和為1可求參數(shù)的值,此時要注意檢驗,以保證每個概率值均為非負(fù)數(shù) (2)求隨機(jī)變量在某個范圍內(nèi)的概率時,根據(jù)分布列,將所求范圍內(nèi)各隨機(jī)變量對應(yīng)的概率相加即可,其依據(jù)是互斥事件的概率加法公式一離散型隨機(jī)變量的分布列及性質(zhì)二離散型隨機(jī)變量分布列的求法 求離散型隨
4、機(jī)變量X的分布列的步驟 理解X的意義,寫出X可能取的全部值;求X取每個值的概率;寫出X的分布列 注:求離散型隨機(jī)變量的分布列的關(guān)鍵是求隨機(jī)變量所取值對應(yīng)的概率,在求解時,要注意應(yīng)用計數(shù)原理、古典概型等知識 【例2】 端午節(jié)包粽子是我國的傳統(tǒng)習(xí)俗設(shè)一盤中裝有10個粽子,其中豆沙粽2個,肉粽3個,白粽5個,這三種粽子的外觀完全相同從中任意選取3個 (1)求三種粽子各取到1個的概率; (2)設(shè)X表示取到的豆沙粽的個數(shù),求X的分布列三超幾何分布 超幾何分布描述的是不放回抽樣問題,隨機(jī)變量為抽到的某類個體的個數(shù),超幾何分布的特征是:考察對象分兩類;已知各類對象的個數(shù);從中抽取若干個個體,考查某類個體數(shù)X
5、的分布列超幾何分布主要用于抽檢產(chǎn)品、摸不同類別的小球等概率模型,其實質(zhì)是古典概型 24支圓珠筆標(biāo)價分別為10元、20元、30元、40元 (1)從中任取一支,求其標(biāo)價X的分布列; (2)從中任取兩支,若以Y表示取到的圓珠筆的最高標(biāo)價,求Y的分布列 3(2018湖南益陽測試)已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束 (1)求第一次檢測出的是次品且第二次檢測出的是正品的概率; (2)已知每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費(fèi)用(單位:元),求X的分
6、布列 4在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品,從這10件產(chǎn)品中任取3件,求: (1)取出的3件產(chǎn)品中一等品件數(shù)X的分布列; (2)取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率 錯因分析:弄清隨機(jī)變量的取值,正確應(yīng)用概率公式是關(guān)鍵有時雖然弄清了隨機(jī)變量的所有取值,但對某個取值考慮不全面避免這種錯誤發(fā)生的有效方法是驗證隨機(jī)變量的概率和是否為1.易錯點(diǎn)隨機(jī)變量取值不全 【例1】 盒子中有大小相同的球10個,其中標(biāo)號為1的球3個,標(biāo)號為2的球4個,標(biāo)號為5的球3個第一次從盒子中任取1個球,放回后第二次再任取1個球(假設(shè)取到每個球的可能性都相同),記第一次與第二次取得球的標(biāo)號之和為,求
7、隨機(jī)變量的可能取值及其分布列 【跟蹤訓(xùn)練1】 (2016全國卷)某公司計劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元,在機(jī)器使用期間,如果備件不足再購買,則每個500元現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購買2臺機(jī)器的同時購買的易損零件數(shù) (1)求X的分布列; (2)若要求P(Xn)0.5,確定n的最小值; (3)
8、以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在n19與n20之中選其一,應(yīng)選用哪個? 解析 (1)由柱狀圖并以頻率代替概率可得,一臺機(jī)器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2.從而 P(X16)0.20.20.04;P(X17)20.20.40.16; P(X18)20.20.20.40.40.24; P(X19)20.20.220.40.20.24; P(X20)20.20.40.20.20.2; P(X21)20.20.20.08;P(X22)0.20.20.04. (3)記Y表示2臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元) 當(dāng)n19時, E(Y)192000.68(19200500)0.2(192002500)0.08(192003500)0.044 040. 當(dāng)n20時, E(Y)202000.88(20200500)0.08(202002500)0.044 080. 可知當(dāng)n19時所需費(fèi)用的期望值小于n20時所需費(fèi)用的期望值,故應(yīng)選n19.