2019-2020年高考數(shù)學 回扣突破練 第25練 極坐標與參數(shù)方程 文.doc
-
資源ID:5444395
資源大小:1.42MB
全文頁數(shù):7頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年高考數(shù)學 回扣突破練 第25練 極坐標與參數(shù)方程 文.doc
2019 2020 年高考數(shù)學 回扣突破練 第 25 練 極坐標與參數(shù)方程 文 一 題型考點對對練 1 極坐標化為普通方程 在平面直角坐標系中 以原點為極點 軸的正半軸為極軸建立 極坐標系 已知直線 經(jīng)過點 曲線 求直線和曲線的直角坐標方程 若點為曲線上任意一點 且點到直線的距離表示為 求的最小值 設(shè) 則點到直線的距離 當時 2 與圓的相關(guān)的極坐標方程解決方法 在直角坐標系中 曲線 曲線的參數(shù)方程為 為參數(shù) 以為極點 軸的正半軸為極軸的極坐標系 1 求的極坐標方程 2 射線與的異于原點的交點為 與的交點為 求 解析 1 將代入曲線的方程 可得曲線的極坐標方程為 曲線的普通方程為 將代入 得到的極坐標方程為 2 射線的極坐標方程為 與曲線的交點的極徑為 射線與曲線的交點的極徑滿足 解得 所以 3 參數(shù)方程與極坐標方程互化 已知曲線 為參數(shù) 和直線 為參 數(shù) 1 將曲線的方程化為普通方程 2 設(shè)直線與曲線交于兩點 且為弦的中點 求弦所在的直線方程 2 將代入 整理得 由為的中點 則 即 故 即 所以所求的直線方程為 4 直線的參數(shù)方程中 t 的幾何意義應(yīng)用 在直角坐標系中 直線的參數(shù)方程為 為參數(shù) 以坐標原點為極點 以軸正半軸為極軸 建立極坐標系 曲 線的極坐標方程為 1 寫出曲線的直角坐標方程 2 已知點的直角坐標為 直線與曲線相交于不同的兩點 求的取值范圍 解析 因為點在橢圓的內(nèi)部 故與恒有兩個交點 即 將直線的參數(shù)方程與橢圓的直角坐 標方程聯(lián)立 得 整理得 則 5 極坐標與參數(shù)方程的綜合應(yīng)用 以坐標原點為極點 以軸正半軸為極軸 建立極坐標 系 已知曲線的極坐標方程為 將曲線 為參數(shù) 經(jīng)過伸縮變換后得到曲線 1 求曲線的參數(shù)方程 2 若點的曲線上運動 試求出到直線的距離的最小值 2 曲線的極坐標方程 化為直角坐標方程 點到的距離 點到的距離的最小值為 二 易錯問題糾錯練 6 圓的極坐標方程應(yīng)用不當至錯 在直角坐標系中 曲線 曲線為參數(shù) 以坐標原點 為極點 軸的正半軸為極軸建立極坐標系 1 求曲線的極坐標方程 2 若射線分別交于兩點 求的最大值 解析 1 C1 cos sin 4 C2的普通方程為 x 1 2 y2 1 所以 2cos 2 設(shè) A 1 B 2 Error Error 則 1 Error 2 2cos Error Error Error 2cos cos sin Error cos2 sin 2 1 Error cos 2 Error 1 當 Error 時 Error 取得最大值Error 1 注意問題 根據(jù) 轉(zhuǎn)化即可 7 不明確直線的參數(shù)方程中的幾何意義至錯 在直角坐標系中 直線的參數(shù)方程為 為 參數(shù) 若以該直角坐標系的原點為極點 軸的非負半軸為極軸建立極坐標系 曲線的極 坐標方程為 求直線與曲線的普通方程 已知直線與曲線交于兩點 設(shè) 求的值 設(shè)對應(yīng)的參數(shù)為 將代入得 直線的參數(shù)方程為可化為 注意問題 直線 l 的參數(shù)方程為 整理可得 利用參數(shù)的幾何意義 求的值 三 新題好題好好練 8 在平面直角坐標系中 直線的參數(shù)方程為 為參數(shù) 以坐標原點為極點 軸正半軸為極軸的極坐標系中 圓的極坐標方程為 若直線與圓相切 求的值 若直線與曲線 為參數(shù) 交于 兩點 點 求 曲線的普通方程為 點在直線上 所以直線的參數(shù)方程還可以寫為 為參數(shù) 將上式代入得 設(shè) 對應(yīng)的參數(shù)分別為 所以 所以 9 在極坐標系中 曲線 曲線 以極點為坐標原點 極軸為軸 正半軸建立直角坐標系 曲線的參數(shù)方程為 為參數(shù) 1 求的直角坐標方程 2 與交于不同四點 這四點在上的排列順次為 求的值 2 不妨設(shè)四點在上的排列順次至上而下為 它們對應(yīng)的參數(shù)分別為 如圖 連接 則為 正三角形 所以 把 代入 得 即 故 所以 10 已知直線的參數(shù)方程是 是參數(shù) 圓的極坐標方程為 1 求圓心的直角坐標 2 由直線上的點向圓引切線 求切線長的最小值 解析 1 圓的直角坐標方程為 即 圓心的直角坐標為 2 直線上的點向圓引切線 則切線長為 直線上的點向圓引的切線長的最小值為 11 在直角坐標系中 以坐標原點為極點 軸的非負半軸為極軸建立極坐標系 圓的極坐標 方程為 求出圓的直角坐標方程 已知圓與軸相交于 兩點 直線 關(guān)于點對稱的直線為 若直線上存在點使得 求實 數(shù)的最大值 12 已知直線 為參數(shù) 曲線 為參數(shù) 1 設(shè)與相交于兩點 求 2 若把曲線上各點的橫坐標壓縮為原來的倍 縱坐標壓縮為原來的倍 得到曲線 設(shè)點 是曲線上的一個動點 求它到直線的距離的最大值 解析 I 的普通方程為 的普通方程為聯(lián)立方程組 解得與的交點為 則 II 的參數(shù)方程為 為參數(shù) 故點的坐標是 從而點到直線的距離是 由此當時 取得最大值 且最大值為