高考數(shù)學一輪復習學案 排列組合二項式定理

上傳人:可**** 文檔編號:52408601 上傳時間:2022-02-08 格式:DOCX 頁數(shù):13 大小:3.31MB
收藏 版權申訴 舉報 下載
高考數(shù)學一輪復習學案 排列組合二項式定理_第1頁
第1頁 / 共13頁
高考數(shù)學一輪復習學案 排列組合二項式定理_第2頁
第2頁 / 共13頁
高考數(shù)學一輪復習學案 排列組合二項式定理_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學一輪復習學案 排列組合二項式定理》由會員分享,可在線閱讀,更多相關《高考數(shù)學一輪復習學案 排列組合二項式定理(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2013年普通高考數(shù)學科一輪復習精品學案 第39講排列、組合、二項式定理 一.課標要求: 1.分類加法計數(shù)原理、分步乘法計數(shù)原理 通過實例,總結出分類加法計數(shù)原理、分步乘法計數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計數(shù)原理或分步乘法計數(shù)原理解決一些簡單的實際問題; 2.排列與組合 通過實例,理解排列、組合的概念;能利用計數(shù)原理推導排列數(shù)公式、組合數(shù)公式,并能解決簡單的實際問題; 3.二項式定理 能用計數(shù)原理證明二項式定理; 會用二項式定理解決與二項展開式有關的簡單問題。 二.命題走向 本部分內容主要包括分類計數(shù)原理、分步計數(shù)原理、排列與組合、二項式定理三部分;考查內容:(

2、1)兩個原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應用;(3)二項式定理,二項展開式的通項公式,二項式系數(shù)及二項式系數(shù)和。 排列、組合不僅是高中數(shù)學的重點內容,而且在實際中有廣泛的應用,因此新高考會有題目涉及;二項式定理是高中數(shù)學的重點內容,也是高考每年必考內容,新高考會繼續(xù)考察。 考察形式:單獨的考題會以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時與概率結合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目;預測2007年高考本部分內容一定會有題目涉及,出現(xiàn)選擇填空的可能性較大,與概率相結合的解答題出現(xiàn)的可能性較大。 三.要點精講 1.排列、組合、二項

3、式知識相互關系表 2.兩個基本原理 (1)分類計數(shù)原理中的分類; (2)分步計數(shù)原理中的分步; 正確地分類與分步是學好這一章的關鍵。 3.排列 (1)排列定義,排列數(shù) (2)排列數(shù)公式:系 ==n·(n-1)…(n-m+1); (3)全排列列: =n!; (4)記住下列幾個階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.組合 (1)組合的定義,排列與組合的區(qū)別; (2)組合數(shù)公式:Cnm==; (3)組合數(shù)的性質 ①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…

4、+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1; 5.二項式定理 (1)二項式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn; (2)通項公式:二項式展開式中第k+1項的通項公式是:Tk+1=Cnkan-kbk; 6.二項式的應用 (1)求某些多項式系數(shù)的和; (2)證明一些簡單的組合恒等式; (3)證明整除性。①求數(shù)的末位;②數(shù)的整除性及求系數(shù);③簡單多項式的整除問題; (4)近似計算。當|x|充分小時,我們常用下列公式估計近似值: ①(1+x)n≈1+nx;②(1+x)n≈1+nx+x2;

5、(5)證明不等式。 四.典例解析 題型1:計數(shù)原理 例1.完成下列選擇題與填空題 (1)有三個不同的信箱,今有四封不同的信欲投其中,則不同的投法有種。 A.81 B.64 C.24 D.4 (2)四名學生爭奪三項冠軍,獲得冠軍的可能的種數(shù)是( ) A.81 B.64 C.24 D.4 (3)有四位學生參加三項不同的競賽, ①每位學生必須參加一項競賽,則有不同的參賽方法有; ②每項競賽只許有一位學生參加,則有不同的參賽方法有; ③每位學生最多參加一項競賽,每項競賽只許有一位學生參加,則不同的參賽方法有。 解析:(1)完成一件事是“

6、分步”進行還是“分類”進行,是選用基本原理的關鍵。將“投四封信”這件事分四步完成,每投一封信作為一步,每步都有投入三個不同信箱的三種方法,因此:N=3×3×3×3=34=81,故答案選A。 本題也可以這樣分類完成,①四封信投入一個信箱中,有C31種投法;②四封信投入兩個信箱中,有C32(C41·A22+C42·C22)種投法;③四封信投入三個信箱,有兩封信在同一信箱中,有C42·A33種投法、,故共有C31+C32(C41·A22+C42C22)+C42·A33=81(種)。故選A。 (2)因學生可同時奪得n項冠軍,故學生可重復排列,將4名學生看作4個“店”,3項冠軍看作“客”,每個“客”

7、都可住進4家“店”中的任意一家,即每個“客”有4種住宿法。由分步計數(shù)原理得:N=4×4×4=64。 故答案選B。 (3)①學生可以選擇項目,而競賽項目對學生無條件限制,所以類似(1)可得N=34=81(種); ②競賽項目可以挑學生,而學生無選擇項目的機會,每一項可以挑4種不同學生,共有N=43=64(種); ③等價于從4個學生中挑選3個學生去參加三個項目的競賽,每人參加一項,故共有C43·A33=24(種)。 例2.今有2個紅球、3個黃球、4個白球,同色球不加以區(qū)分,將這9個球排成一列有種不同的方法(用數(shù)字作答)。 解析:本題考查排列組合的基本知識,由題意可知,因同色球不加以區(qū)分,

8、實際上是一個組合問題,共有。 點評:分步計數(shù)原理與分類計數(shù)原理是排列組合中解決問題的重要手段,也是基礎方法,在高中數(shù)學中,只有這兩個原理,尤其是分類計數(shù)原理與分類討論有很多相通之處,當遇到比較復雜的問題時,用分類的方法可以有效的將之化簡,達到求解的目的。 題型2:排列問題 例3.(1)在這五個數(shù)字組成的沒有重復數(shù)字的三位數(shù)中,各位數(shù)字之和為奇數(shù)的共有( ) (A)36個 (B)24個 (C)18個 (D)6個 (2)從4名男生和3名女生中選出3人,分別從事三項不同的工作,若這3人中至少有1名女生,則選派方案共有( ) (A

9、)108種    (B)186種    ?。–)216種     (D)270種 (3)在數(shù)字1,2,3與符號+,-五個元素的所有全排列中,任意兩個數(shù)字都不相鄰的全排列個數(shù)是( ) A.6     B. 12     C. 18    D. 24 (4)高三(一)班學要安排畢業(yè)晚會的4各音樂節(jié)目,2個舞蹈節(jié)目和1個曲藝節(jié)目的演出順序,要求兩個舞蹈節(jié)目不連排,則不同排法的種數(shù)是( ) (A)1800 (B)3600 (C)4320 (D)5040 解析:(1)依題意,所選

10、的三位數(shù)字有兩種情況:(1)3個數(shù)字都是奇數(shù),有種方法(2)3個數(shù)字中有一個是奇數(shù),有,故共有+=24種方法,故選B; (2)從全部方案中減去只選派男生的方案數(shù),合理的選派方案共有=186種,選B; (3)先排列1,2,3,有種排法,再將“+”,“-”兩個符號插入,有種方法,共有12種方法,選B; (4)不同排法的種數(shù)為=3600,故選B。 點評:合理的應用排列的公式處理實際問題,首先應該進入排列問題的情景,想清楚我處理時應該如何去做。 例4.(1)用數(shù)字0,1,2,3,4組成沒有重復數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有個(用數(shù)字作答); (2)電視臺連續(xù)播放6個廣告,其中含

11、4個不同的商業(yè)廣告和2個不同的公益廣告,要求首尾必須播放公益廣告,則共有種不同的播放方式(結果用數(shù)值表示). 解析:(1)可以分情況討論:① 若末位數(shù)字為0,則1,2,為一組,且可以交換位置,3,4,各為1個數(shù)字,共可以組成個五位數(shù);② 若末位數(shù)字為2,則1與它相鄰,其余3個數(shù)字排列,且0不是首位數(shù)字,則有個五位數(shù);③ 若末位數(shù)字為4,則1,2,為一組,且可以交換位置,3,0,各為1個數(shù)字,且0不是首位數(shù)字,則有=8個五位數(shù),所以全部合理的五位數(shù)共有24個。 (2)分二步:首尾必須播放公益廣告的有A22種;中間4個為不同的商業(yè)廣告有A44種,從而應當填 A22·A44=48. 從而應填48

12、。 點評:排列問題不可能解決所有問題,對于較復雜的問題都是以排列公式為輔助。 題型三:組合問題 例5.(1)將5名實習教師分配到高一年級的3個班實習,每班至少1名,最多2名,則不同的分配方案有( ) (A)30種  ?。˙)90種 (C)180種   ?。―)270種 (2)將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有( ?。? A.10種     B.20種     C.36種      D.52種 解析:(1)將5名實習教師分配到高一年級的3個班實習,每班至少1名,最多2名,則將5

13、名教師分成三組,一組1人,另兩組都是2人,有種方法,再將3組分到3個班,共有種不同的分配方案,選B; (2)將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,分情況討論:①1號盒子中放1個球,其余3個放入2號盒子,有種方法;②1號盒子中放2個球,其余2個放入2號盒子,有種方法;則不同的放球方法有10種,選A。 點評:計數(shù)原理是解決較為復雜的排列組合問題的基礎,應用計數(shù)原理結合 例6.(1)某校從8名教師中選派4名教師同時去4個邊遠地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有種; (2)5名志愿者分到3所學校支教,每個

14、學校至少去一名志愿者,則不同的分派方法共有( ) (A)150種 (B)180種 (C)200種 (D)280種 解析:(1)可以分情況討論,① 甲去,則乙不去,有=480種選法;②甲不去,乙去,有=480種選法;③甲、乙都不去,有=360種選法;共有1320種不同的選派方案; (2)人數(shù)分配上有1,2,2與1,1,3兩種方式,若是1,2,2,則有=60種,若是1,1,3,則有=90種,所以共有150種,選A。 點評:排列組合的交叉使用可以處理一些復雜問題,諸如分組問題等; 題型4:排列、組合的綜合問題 例7.平面上給定10個點,任意三點不共線

15、,由這10個點確定的直線中,無三條直線交于同一點(除原10點外),無兩條直線互相平行。求:(1)這些直線所交成的點的個數(shù)(除原10點外)。(2)這些直線交成多少個三角形。 解法一:(1)由題設這10點所確定的直線是C102=45條。 這45條直線除原10點外無三條直線交于同一點,由任意兩條直線交一個點,共有C452個交點。而在原來10點上有9條直線共點于此。所以,在原來點上有10C92點被重復計數(shù); 所以這些直線交成新的點是:C452-10C92=630。 (2)這些直線所交成的三角形個數(shù)可如下求:因為每個三角形對應著三個頂點,這三個點來自上述630個點或原來的10個點。所以三角形的個

16、數(shù)相當于從這640個點中任取三個點的組合,即C6403=43486080(個)。 解法二:(1)如圖對給定的10點中任取4個點,四點連成6條直線,這6條直線交3個新的點。故原題對應于在10個點中任取4點的不同取法的3倍,即這些直線新交成的點的個數(shù)是:3C104=630。 (2)同解法一。 點評:用排列、組合解決有關幾何計算問題,除了應用排列、組合的各種方法與對策之外,還要考慮實際幾何意義。 例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。 解 設傾斜角為θ,由θ

17、為銳角,得tanθ=->0,即a、b異號。 (1)若c=0,a、b各有3種取法,排除2個重復(3x-3y=0,2x-2y=0,x-y=0),故有3×3-2=7(條); (2)若c≠0,a有3種取法,b有3種取法,而同時c還有4種取法,且其中任兩條直線均不相同,故這樣的直線有3×3×4=36條,從而符合要求的直線共有7+36=43條; 點評:本題是1999年全國高中數(shù)學聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯誤原因沒有對c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復的直線。 題型5:二項式定理 例9.(1)在的展開式中,的冪的指數(shù)是整數(shù)的項共有 A.3項

18、 B.4項 C.5項 D.6項 (2)的展開式中含x的正整數(shù)指數(shù)冪的項數(shù)是 (A)0     (B)2    ?。–)4    ?。―)6 解析:本題主要考查二項式展開通項公式的有關知識; (1),當r=0,3,6,9,12,15,18,21,24時,x的指數(shù)分別是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均為2的整數(shù)次冪,故選C; (2)的展開式通項為,因此含x的正整數(shù)次冪的項共有2項.選B; 點評:多項式乘法的進位規(guī)則。在求系數(shù)過程中,盡量先化簡,降底數(shù)的運算級別,盡量化成加減運算,在運算過程可以適當

19、注意令值法的運用,例如求常數(shù)項,可令.在二項式的展開式中,要注意項的系數(shù)和二項式系數(shù)的區(qū)別。 例10.(1)在(x-)2006 的二項展開式中,含x的奇次冪的項之和為S,當x=時,S等于( ) A.23008 B.-23008 C.23009 D.-23009 (2)已知的展開式中第三項與第五項的系數(shù)之比為-,其中=-1,則展開式中常數(shù)項是( ) (A)-45i (B) 45i (C) -45 (D)45 (3)若多項式 ( ) (A)9

20、 (B)10 (C)-9 (D)-10 解析:(1)設(x-)2006=a0x2006+a1x2005+…+a2005x+a2006; 則當x=時,有a0()2006+a1()2005+…+a2005()+a2006=0 (1), 當x=-時,有a0()2006-a1()2005+…-a2005()+a2006=23009 (2), (1)-(2)有a1()2005+…+a2005()=-23009?2=-23008,,故選B; (2)第三項的系數(shù)為-,第五項的系數(shù)為,由第三項與第五項的系數(shù)之比為-可得n=10,則=,令40

21、-5r=0,解得r=8,故所求的常數(shù)項為=45,選A; (3)令,得,令,得; 點評:本題考查二項式展開式的特殊值法,基礎題; 題型6:二項式定理的應用 例11.證明下列不等式: (1)≥()n,(a、b∈{x|x是正實數(shù)},n∈N); (2)已知a、b為正數(shù),且+=1,則對于n∈N有 (a+b)n-an-bn≥22n-2n+1。 證明:(1)令a=x+δ,b=x-δ,則x=; an+bn=(x+δ)n+(x-δ)n =xn+Cn1xn-1δ+…+Cnnδn+xn-Cn1xn-1δ+…(-1)nCnnδn =2(xn+Cn2xn-2δ2+Cn4xn-4δ4+…) ≥2x

22、n 即≥()n (2)(a+b)n=an+Cn1an-1b+…+Cnnbn (a+b)n=bn+Cn1bn-1a+…+Cnnan 上述兩式相加得: 2(a+b)n=(an+bn)+Cn1(an-1b+bn-1a)+…+Cnk(an-kbk+bn-kak)+…+Cnn(an+bn) (*) ∵+=1,且a、b為正數(shù) ∴ab=a+b≥2 ∴ab≥4 又∵?an-kbk+bn-kak≥2=2()n(k=1,2,…,n-1) ∴2(a+b) n≥2an+2bn+Cn12()n+Cn22()n+…+Cnn-12()n ∴(a+b)n-an-bn ≥(Cn1+Cn2+…+Cnn

23、-1)·()n ≥(2n-2)·2n =22n-2n+1 點評:利用二項式定理的展開式,可以證明一些與自然數(shù)有關的不等式問題。題(1)中的換元法稱之為均值換元(對稱換元)。這樣消去δ奇數(shù)次項,從而使每一項均大于或等于零。題(2)中,由由稱位置二項式系數(shù)相等,將展開式倒過來寫再與原來的展開式相加,這樣充分利用對稱性來解題的方法是利用二項式展開式解題的常用方法。 例12.(1)求4×6n+5n+1被20除后的余數(shù); (2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少? (3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.00

24、1。 解析:(1)首先考慮4·6n+5n+1被4整除的余數(shù)。 ∵5n+1=(4+1)n+1=4n+1+Cn+114n+Cn+124n-1+…+Cn+1n·4+1, ∴其被4整除的余數(shù)為1, ∴被20整除的余數(shù)可以為1,5,9,13,17, 然后考慮4·6n+1+5n+1被5整除的余數(shù)。 ∵4·6n=4·(5+1)n=4(5n+Cn1·5n-1+Cn2·5n-2+…+Cnn-1·5+1), ∴被5整除的余數(shù)為4, ∴其被20整除的余數(shù)可以為4,9,14,19。 綜上所述,被20整除后的余數(shù)為9。 (2) 7n+Cn1·7n-1+Cn2·7n-2+…+Cnn-1·7

25、 =(7+1)n-1=8n-1=(9-1)n-1 =9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9+(-1)nCnn-1 (i)當n為奇數(shù)時 原式=9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9-2 ∴除以9所得余數(shù)為7。 (ii)當n為偶數(shù)時 原式=9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9 ∴除以9所得余數(shù)為0,即被9整除。 (3)(1.02)5≈(1+0.02)5 =1+c51·0.02+C52·0.022+C53·0.023+C540.024+C5

26、5·0.025 ∵C52×0.022=0.004,C53×0.023=8×10-5 ∴①當精確到0.01時,只要展開式的前三項和,1+0.10+0.004=1.104,近似值為1.10。 ②當精確到0.001時,只要取展開式的前四項和,1+0.10+0.004+0.0008=1.10408,近似值為1.104。 點評:(1)用二項式定理來處理余數(shù)問題或整除問題時,通常把底數(shù)適當?shù)夭鸪蓛身椫突蛑钤侔炊検蕉ɡ碚归_推得所求結論; (2)用二項式定理來求近似值,可以根據(jù)不同精確度來確定應該取到展開式的第幾項。 五.思維總結 解排列組合應用題的基本規(guī)律 1.分類計數(shù)原理與分步計數(shù)原

27、理使用方法有兩種:①單獨使用;②聯(lián)合使用。 2.將具體問題抽象為排列問題或組合問題,是解排列組合應用題的關鍵一步。 3.對于帶限制條件的排列問題,通常從以下三種途徑考慮: (1)元素分析法:先考慮特殊元素要求,再考慮其他元素; (2)位置分析法:先考慮特殊位置的要求,再考慮其他位置; (3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。 4.對解組合問題,應注意以下三點: (1)對“組合數(shù)”恰當?shù)姆诸愑嬎?,是解組合題的常用方法; (2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”; (3)設計“分組方案”是解組合題的關鍵所在。 內容總結 (1)2013年普通高考數(shù)學科一輪復習精品學案 第39講排列、組合、二項式定理 一.課標要求: 1.分類加法計數(shù)原理、分步乘法計數(shù)原理 通過實例,總結出分類加法計數(shù)原理、分步乘法計數(shù)原理 (2)③四封信投入三個信箱,有兩封信在同一信箱中,有C42·A33種投法、,故共有C31+C32(C41·A22+C42C22)+C42·A33=81(種)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!