《江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第4講 圓錐曲線的熱點(diǎn)問(wèn)題課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省蘇州市第五中學(xué)高考數(shù)學(xué)總復(fù)習(xí) 第4講 圓錐曲線的熱點(diǎn)問(wèn)題課件(51頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第4講圓錐曲線的熱點(diǎn)問(wèn)題講圓錐曲線的熱點(diǎn)問(wèn)題 知 識(shí) 梳 理 1直線與圓錐曲線的位置關(guān)系判斷直線l與圓錐曲線C的位置關(guān)系時(shí),通常將直線l的方程AxByC0(A,B不同時(shí)為0)代入圓錐曲線C的方程F(x,y)0,消去y(也可以消去x)得到一個(gè)關(guān)于變量x(或變量y)的一元方程(1)當(dāng)a0時(shí),設(shè)一元二次方程ax2bxc0的判別式為,則0直線與圓錐曲線C ;0直線與圓錐曲線C ;0直線與圓錐曲線C (2)當(dāng)a0,b0時(shí),即得到一個(gè)一次方程,則直線l與圓錐曲線C相交,且只有一個(gè)交點(diǎn),此時(shí),若C為雙曲線,則直線l與雙曲線的漸近線的位置關(guān)系是平行;若C為拋物線,則直線l與拋物線的對(duì)稱軸的位置關(guān)系是平行相交
2、 相切 無(wú)公共點(diǎn) 2圓錐曲線的弦長(zhǎng)(1)圓錐曲線的弦長(zhǎng)直線與圓錐曲線相交有兩個(gè)交點(diǎn)時(shí),這條直線上以這兩個(gè)交點(diǎn)為端點(diǎn)的線段叫做圓錐曲線的弦(就是連接圓錐曲線上任意兩點(diǎn)所得的線段),線段的長(zhǎng)就是弦長(zhǎng) 感悟提升兩個(gè)防范一是在解決直線與拋物線的位置關(guān)系時(shí),要特別注意直線與拋物線的對(duì)稱軸平行的特殊情況,如(2);二是中點(diǎn)弦問(wèn)題,可以利用“點(diǎn)差法”,但不要忘記驗(yàn)證0或說(shuō)明中點(diǎn)在曲線內(nèi)部,如(5). 考點(diǎn)一直線與圓錐曲線位置關(guān)系規(guī)律方法 將直線與圓錐曲線的兩個(gè)方程聯(lián)立成方程組,然后判斷方程組是否有解,有幾個(gè)解,這是直線與圓錐曲線位置關(guān)系的判斷方法中最常用的方法,注意:在沒(méi)有給出直線方程時(shí),要對(duì)是否有斜率不存
3、在的直線的情況進(jìn)行討論,避免漏解規(guī)律方法 直線與圓錐曲線的弦長(zhǎng)問(wèn)題,較少單獨(dú)考查弦長(zhǎng)的求解,一般是已知弦長(zhǎng)的信息求參數(shù)或直線的方程解此類題的關(guān)鍵是設(shè)出交點(diǎn)的坐標(biāo),利用求根公式得到弦長(zhǎng),將已知弦長(zhǎng)的信息代入求解 【訓(xùn)練2】 已知點(diǎn)Q(1,6)是拋物線C1:y22px(p0)上異于坐標(biāo)原點(diǎn)O的點(diǎn),過(guò)點(diǎn)Q與拋物線C2:y2x2相切的兩條直線分別交拋物線C1于點(diǎn)A,B.求直線AB的方程及弦AB的長(zhǎng)審題路線(2)寫出直線BP的方程與橢圓方程聯(lián)立解得P點(diǎn)坐標(biāo)寫出直線AD的方程由直線BP與直線AD的方程聯(lián)立解得M點(diǎn)坐標(biāo)由D、P、N三點(diǎn)共線解得N點(diǎn)坐標(biāo)求直線MN的斜率m作差:2mk為定值規(guī)律方法 求定值問(wèn)題常
4、見(jiàn)的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值 考點(diǎn)四圓錐曲線中的范圍與最值問(wèn)題 【例4】 (2013浙江卷)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1)(1)求拋物線C的方程;(2)過(guò)點(diǎn)F作直線交拋物線C于A,B兩點(diǎn)若直線AO,BO分別交直線l:yx2于M,N兩點(diǎn),求|MN|的最小值規(guī)律方法 圓錐曲線中的最值問(wèn)題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)求最值;二是代數(shù)法,常將圓錐曲線的最值問(wèn)題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問(wèn)題,然后利用基本不等式、函數(shù)的單調(diào)性或三角
5、函數(shù)的有界性等求最值 1涉及弦長(zhǎng)的問(wèn)題時(shí),應(yīng)熟練地利用求根公式,設(shè)而不求計(jì)算弦長(zhǎng);涉及垂直關(guān)系往往也是利用根與系數(shù)的關(guān)系設(shè)而不求簡(jiǎn)化運(yùn)算;涉及過(guò)焦點(diǎn)的弦的問(wèn)題,可考慮利用圓錐曲線的定義求解 2關(guān)于圓錐曲線的中點(diǎn)弦問(wèn)題直線與圓錐曲線相交所得弦中點(diǎn)問(wèn)題,是解析幾何的內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問(wèn)題這類問(wèn)題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問(wèn)題;(2)求弦中點(diǎn)的軌跡方程問(wèn)題;(3)弦長(zhǎng)為定值時(shí),弦中點(diǎn)的坐標(biāo)問(wèn)題其解法有代點(diǎn)相減法、設(shè)而不求法、參數(shù)法、待定系數(shù)法及中心對(duì)稱變換法等3圓錐曲線綜合問(wèn)題要四重視:(1)重視定義在解題中的作用;(2)重視平面幾何知識(shí)在解題中的作用;(3)重視求根公式在解題中的作用;(4)重視曲線的幾何特征與方程的代數(shù)特征在解題中的作用 答題模板12圓錐曲線中的探索性問(wèn)題反思感悟 (1)本題是圓錐曲線中的探索性問(wèn)題,也是最值問(wèn)題,求圓錐曲線的最值問(wèn)題是高考考查的一個(gè)重點(diǎn),通常是先建立一個(gè)目標(biāo)函數(shù),然后利用函數(shù)的單調(diào)性或基本不等式求最值(2)本題的第一個(gè)易錯(cuò)點(diǎn)是表達(dá)不出橢圓C上的點(diǎn)到Q(0,2)的距離的最大值;第二個(gè)易錯(cuò)點(diǎn)是沒(méi)有掌握探索性問(wèn)題的解題步驟;第三個(gè)易錯(cuò)點(diǎn)是沒(méi)有正確使用基本不等式