數(shù)列大題訓練50題[共32頁]

上傳人:1528****253 文檔編號:46178861 上傳時間:2021-12-11 格式:DOC 頁數(shù):32 大?。?.59MB
收藏 版權申訴 舉報 下載
數(shù)列大題訓練50題[共32頁]_第1頁
第1頁 / 共32頁
數(shù)列大題訓練50題[共32頁]_第2頁
第2頁 / 共32頁
數(shù)列大題訓練50題[共32頁]_第3頁
第3頁 / 共32頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數(shù)列大題訓練50題[共32頁]》由會員分享,可在線閱讀,更多相關《數(shù)列大題訓練50題[共32頁](32頁珍藏版)》請在裝配圖網上搜索。

1、 數(shù)列大題訓練50題 數(shù)列大題訓練50題 1 .數(shù)列{}的前n項和為,且滿足,. (1)求{}的通項公式; (2)求和Tn =. 2 .已知數(shù)列,a1=1,點在直線上. (1)求數(shù)列的通項公式; (2)函數(shù),求函數(shù)最小值. 3 .已知函數(shù) (a,b為常數(shù))的圖象經過點P(1,)和Q(4,8) (1) 求函數(shù)的解析式; (2) 記an=log2,n是正整數(shù),是數(shù)列{an}的前n項和,求的最小值。 4 .已知y=f(x)為一次函數(shù),且f(2)、f(5)、f(4)成等比數(shù)列,f(8)=15. 求=f(1)+f(2)+…+f(n)的表達式. 5 .設數(shù)列的前項和為,

2、且,其中是不等于和0的實常數(shù). (1)求證: 為等比數(shù)列; (2)設數(shù)列的公比,數(shù)列滿足,試寫出 的通項公式,并求的結果. 6 .在平面直角坐標系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點Bn(n,bn) (n∈N*)都在斜率為6的同一條直線上. (1)試用a1,b1與n來表示an; (2)設a1=a,b1=-a,且12

3、.已知數(shù)列 (I)試求a2,a3的值; (II)若存在實數(shù)為等差數(shù)列,試求λ的值. 9 .已知數(shù)列的前項和為,若, (1)求數(shù)列的通項公式; (2)令,①當為何正整數(shù)值時,:②若對一切正整數(shù),總有,求的取值范圍。 10.已知數(shù)列的前n項和是n的二次函數(shù),滿足且 (1)求數(shù)列的通項公式; (2)設數(shù)列滿足,求中數(shù)值最大和最小的項. 12.已知數(shù)列中,,且當時, (1)求數(shù)列的通項公式; (2)若的前項和為,求。 13.正數(shù)數(shù)列的前項和,滿足,試求:(I)數(shù)列的通項公式;(II)設,數(shù)列的前項的和為,求證:。 14.已知函數(shù)=,數(shù)列中,2an+1-2an+an+1an

4、=0,a1=1,且an≠0, 數(shù)列{bn}中, bn=f(an-1) (1)求證:數(shù)列{}是等差數(shù)列; (2)求數(shù)列{bn}的通項公式; (3)求數(shù)列{}的前n項和Sn. 15.已知函數(shù)=abx的圖象過點A(4,)和B(5,1). (1)求函數(shù)解析式; (2)記an=log2 n∈N*,是數(shù)列的前n項和,解關于n的不等式 16.已知數(shù)列的前項的和為,且,. (1)求證:為等差數(shù)列; (2)求數(shù)列的通項公式. 17.在平面直角坐標系中,已知、、,滿足向量與向量共線,且點都在斜率6的同一條直線上. (1)證明數(shù)列是等差數(shù)列;(2)試用與n來表示; (3)設,且12,求數(shù)

5、中的最小值的項. 18.設正數(shù)數(shù)列{}的前n項和滿足. (I)求數(shù)列{}的通項公式; (II)設,求數(shù)列{}的前n項和. 19.已知等差數(shù)列{an}中,a1=1,公差d>0,且a2、a5、a14分別是等比數(shù)列{bn}的第二項、第三項、第四項. (Ⅰ)求數(shù)列{an}、{bn}的通項an、bn; (Ⅱ)設數(shù)列{cn}對任意的n∈N*,均有+…+=an+1成立,求c1+c2+…+c2005的值. 20.已知數(shù)列{}滿足,且 (1)求證:數(shù)列{}是等差數(shù)列;(2)求數(shù)列{}的通項公式; (3)設數(shù)列{}的前項之和,求證:。 21.設數(shù)列{an}的前n項和為=2n2,{bn}為等比數(shù)

6、列,且a1=b1,b2(a2 -a1) =b1。 (1)求數(shù)列{an}和{bn}的通項公式; (2)設cn=, 求數(shù)列{cn}的前n項和Tn. 22.已知函數(shù)與函數(shù)>0)的圖象關于對稱. (1) 求; (2) 若無窮數(shù)列滿足,且點均在函數(shù)上,求的值,并求數(shù)列的所有項的和(即前項和的極限)。 23.已知函數(shù) (1)求證:數(shù)列是等差數(shù)列; (2)若數(shù)列的前n項和 24.已知數(shù)列和滿足:,,,(),且是以為公比的等比數(shù)列  (I)證明:; (II)若,證明數(shù)列是等比數(shù)列; (III)求和:  25.已知a1=2,點(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n

7、=1,2,3,… (1)證明數(shù)列{lg(1+an)}是等比數(shù)列; (2)設Tn=(1+a1) (1+a2) …(1+an),求數(shù)列{an}的通項及Tn; 26.等差數(shù)列是遞增數(shù)列,前n項和為,且a1,a3,a9成等比數(shù)列,. (1)求數(shù)列的通項公式; (2)若數(shù)列滿足,求數(shù)列的前n項的和. 27.已知向量且.若與共線, (1)求數(shù)列的通項公式; (2)求數(shù)列的前項和. 28.已知:數(shù)列滿足. (1)求數(shù)列的通項; (2)設求數(shù)列的前n項和Sn. 29.對負整數(shù)a,數(shù)可構成等差數(shù)列. (1)求a的值; (2)若數(shù)列滿足首項為,①令,求的通項公式;②若對任意,求取值

8、范圍. 30.數(shù)列 (1)求證:數(shù)列是等比數(shù)列; (2)求數(shù)列{}的通項公式; (3)若 31.已知二次函數(shù)的圖像經過坐標原點,其導函數(shù)為,數(shù)列的前n項和為,點均在函數(shù)的圖像上。 (Ⅰ)、求數(shù)列的通項公式; (Ⅱ)、設,是數(shù)列的前n項和,求使得對所有都成立的最小正整數(shù)m; 32.已知數(shù)列{an}的前n項和為Sn,且滿足 (Ⅰ)判斷是否為等差數(shù)列?并證明你的結論; (Ⅱ)求Sn和an 20070209 (Ⅲ)求證: 33.若和分別表示數(shù)列和的前項和,對任意正整數(shù)有。 (1)求; (2)求數(shù)列的通項公式; (3)設集合,若等差數(shù)列的任一項是的最大數(shù),且,求的通項公

9、式。 34.已知點列在直線l:y = 2x + 1上,P1為直線l與 y軸的交點,等差數(shù)列{an}的公差為 (Ⅰ)求{an}、{bn}的通項公式; (Ⅱ),求和:C2 + C3 + … +Cn; (Ⅲ)若,且d1 = 1,求證數(shù)列為等比數(shù)列:求{dn}的通項公式 35.已知數(shù)列是首項為,公比的等比數(shù)列,設,數(shù)列滿足. (Ⅰ)求證:數(shù)列成等差數(shù)列; (Ⅱ)求數(shù)列的前n項和; (Ⅲ)若對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍. 36.已知數(shù)列{an}的前n項和為Sn(),且 (1)求證:是等差數(shù)列; (2)求an; (3)若,求證: 37.已知 (Ⅰ)當,時,問

10、分別取何值時,函數(shù)取得最大值和最小值,并求出相應的最大值和最小值; (Ⅱ)若在R上恒為增函數(shù),試求的取值范圍; (Ⅲ)已知常數(shù),數(shù)列滿足,試探求的值,使得數(shù)列成等差數(shù)列. 38.在數(shù)列 (I)求數(shù)列的通項公式; (II)求證: 39.設函數(shù)f(x)的定義域為,且對任意正實數(shù)x,y都有恒成立,已知 (1)求的值; (2)判斷上單調性; (3)一個各項均為正數(shù)的數(shù)列{an}滿足:其中Sn是數(shù)列{an}的前n項和,求Sn與an的值. 40.已知定義在(-1,1)上的函數(shù)f (x)滿足,且對x,y時,有。 (I)判斷在(-1,1)上的奇偶性,并證明之; (II)令,求數(shù)列的通

11、項公式; (III)設Tn為數(shù)列的前n項和,問是否存在正整數(shù)m,使得對任意的,有成立?若存在,求出m的最小值;若不存在,則說明理由。 41.已知,且 (1)求的表達式; (2)若關于的函數(shù)在區(qū)間(-,-1]上的最小值為12,求的值。 42.設不等式組所表示的平面區(qū)域為,記內的整點個數(shù)為 。(整點即橫坐標和縱坐標均為整數(shù)的點) (I)求數(shù)列的通項公式; (II)記數(shù)列的前n項和為,且,若對于一切的正整數(shù)n,總有,求實數(shù)m的取值范圍。 43.在數(shù)列中,,其中 (Ⅰ)求數(shù)列的通項公式; (Ⅱ)求數(shù)列的前項和; (Ⅲ)證明存在,使得對任意均成立 44.設數(shù)列{an}是首

12、項為4,公差為1的等差數(shù)列,Sn為數(shù)列{bn}的前n項和,且 (I)求{an}及{bn}的通項公式an和bn. (II)若成立?若存在,求出k的值;若不存在,說明理由; (III)若對任意的正整數(shù)n,不等式恒成立,求正數(shù)a的取值范圍. 45.函數(shù)的最小值為且數(shù)列的前項和為. (Ⅰ)求數(shù)列的通項公式; (Ⅱ)若數(shù)列是等差數(shù)列,且,求非零常數(shù); (Ⅲ)若,求數(shù)列的最大項. 46.設數(shù)列的各項均為正數(shù),它的前項的和為,點在函數(shù)的圖像上;數(shù)列滿足.其中. ⑴求數(shù)列和的通項公式; ⑵設,求證:數(shù)列的前項的和(). 47.設數(shù)列; (1)證明:數(shù)列是等比數(shù)列; (2)設數(shù)列的

13、公比求數(shù)列的通項公式; (3)記; 48.已知二次函數(shù)滿足,且對一切實數(shù)恒成立. (1)求 (2)求的表達式; (3)求證:. 49.在數(shù)列中,,, (Ⅰ)若對于,均有成立,求的值; (Ⅱ)若對于,均有成立,求的取值范圍; (Ⅲ)請你構造一個無窮數(shù)列,使其滿足下列兩個條件,并加以證明: ① ; ② 當為中的任意一項時,中必有某一項的值為1. 50.對任意都有 (Ⅰ)求和的值. (Ⅱ)數(shù)列滿足:=+,數(shù)列是等差數(shù)列嗎?請給予證明; (Ⅲ)令試比較與的大?。? 數(shù)列大題訓練50題 參考答案 1 .解:(1) ∵ ,兩式相減,得, ∴ , ∴.

14、 (2) = ==. 2 .解 (1)∵在直線x-y+1=0上, ∴ 故是首項為1,公差為1的等差數(shù)列. ∴ (2)∵ ∴ ∴的最小值是 3 .解:(1)因為函數(shù)f(x)=abx(a,b為常數(shù))的圖象經過點P,Q則有 (2)an = log2(n) = log2 = 2n - 5 因為an+1 - an=2(n + 1)- 5 -(2n -5) = 2 ; 所以{an}是首項為-3,公差為 2的等差數(shù)列 所以 當n=2時,取最小值 - 4 4 .解:設y=f(x)=kx+b( k≠0),則f(2)=2k+b,f

15、(5)=5k+b,f(4)=4k+b, 依題意:[f(5)]2=f(2)f(4). 即:(5k+b)2=(2k+b)(4k+b),化簡得k(17k+4b)=0. ∵k≠0,∴b=-k ① 又∵f(8)=8k+b=15 ② 將①代入②得k=4,b=-17. ∴Sn=f(1)+f(2)+…+f(n)=(41-17)+(42-17)+…+(4n-17) =4(1+2+…+n)-17n=2n2-15n. 5 .(1),所以是等比數(shù)列 (2),所以是等差數(shù)列 (3) 6 .解:(1)∵點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上, ∴=6,即b

16、n+1-bn=6, 于是數(shù)列{bn}是等差數(shù)列,故bn=b1+6(n-1). ∵共線. ∴1(-bn)-(-1)(an+1-an )=0,即an+1-an=bn ∴當n≥2時,an=a1+(a2-a1)+(a3-a2)+ …+(an-an-1)=a1+b1+b2+b3+…+bn-1 =a1+b1(n-1)+3(n-1)(n-2) 當n=1時,上式也成立. 所以an=a1+b1(n-1)+3(n-1)(n-2). (2)把a1=a,b1=-a代入上式,得an=a-a(n-1)+3(n-1)(n-2)=3n2-(9+a)n+6+2a. ∵12

17、an取最小值,最小值為a4=18-2a. 7 .解:(1)已知…N*)   ① 時,…N*)  ② ①-②得,,求得, 在①中令,可得得, 所以N*). 由題意,,,所以,, ∴數(shù)列的公差為, ∴, N*). (2), 當時,單調遞增,且, 所以時,, 又, 所以,不存在N*,使得. 8 .(I)解 依a1=5可知:a2=23, a3=95 (II)解 設 若{bn}是等差數(shù)列,則有2b2=b1+b3 即 得 事實上, 因此,存在、公差是1的等差數(shù)列 9 .解:(1)令,,即 由 ∵,∴,即數(shù)列是以為首

18、項、為公差的等差數(shù)列, ∴ (2)①,即 ②∵,又∵時, ∴各項中數(shù)值最大為,∵對一切正整數(shù),總有恒成立,因此 10.依題意設 (1),∴ ① 又∴ ② 由①、②得所以 又 而符合上式,∴ (2) 當時,是增函數(shù),因此為的最小項,且 又,所以中最大項為,最小項為。 11.(1)由y=得 x=,∴ 又an+1=f-1(an)(n),∴an+1= a1= ,an+1= ,∴an(nN+) ∴且 ∴{}是以-2007為首項, 2為公差的等差數(shù)列 ∴ ∴為所求 (2)由(1)知bn=, 記g(n)=(2n-2009)(2n-2011)(nN+)

19、 當1≤n≤1004時,g(n)單調遞減且gmin(n)=g(1004)=3 此時bn>0且bn的最大值為; 當n=1005時,g(n)=-1; 當n≥1006時,g(n)單調遞增且gmin(n)=g(1006)=3此時bn>0且bn的最大值為; 綜上:bn的最大值為,最小值為-1 12.(1) 等差數(shù)列 (2)錯位相減, 13.(I)由已知,得 作差,得。 又因為正數(shù)數(shù)列,所以,由,得 (II), 所以……= 14.解:(1)2an+1-2an+an+1an=0 ∵an≠0, 兩邊同除an+1an ∴數(shù)列{}是首項為

20、1,公差為的等差數(shù)列 (2)∵= ∴an-1= ∵bn=f(an-1)=f()=-n+6 (n∈N) (3) -n+6 (n≤6, n∈N) = n-6 (n>6, n∈N) (n≤6, n∈N) ∴Sn= (n>6, n∈N) 15.(1) (2)n=5,6,7,8,9 16.解:(1)當時,,∴, ∴, ∴數(shù)列為等差數(shù)列. (2)由(1)知,, ∴. 當時,, ∴

21、 17.解:(1)∵點都在斜率為6的同一條直線上, 于是數(shù)列是等差數(shù)列,故 (2)共線, 當n=1時,上式也成立. 所以 (3)把代入上式, 得 , ∴當n=4時,取最小值,最小值為 18.解:(Ⅰ)當時,,∴ . ∵ , ① ∴ (n. ② ①-②,得 , 整理得,, ∵ ∴ . ∴ ,即. 故數(shù)列是首項為,公差為的等差數(shù)列. ∴ . (Ⅱ)∵ , ∴ . 19.解:(Ⅰ)由題意,有 (a1+d)(a1+13d)=

22、(a1+4d)2. 而a1=1,d>0.∴d=2,∴an=2n-1. 公比q==3,a2=b2=3. ∴bn=b2qn-2=33 n-2=3 n-1. (Ⅱ)當n=1時,=a2,∴c1=13=3. 當n≥2時,∵ ……① ……② ②—①,得∴cn=2bn= ∴cn= ∴c1+c2+c3+…+c2005=3+2(31+32+33+…+32004) =3+2 20.(1) 21.解:(1)∵當n=1時 ,a1=S1=2; 當n≥2時,an=Sn -Sn-1=2n2 -2(n-1)2=4n-2. 故數(shù)列{an}的通項公式an=4n-2,公差d=4.

23、設{bn}的公比為q,則b1qd= b1,∵d=4,∴q=.∴bn=b1qn-1=2=, 即數(shù)列{ bn }的通項公式bn=。 (2)∵ ∴Tn=1+341+542++(2n-1)4n-1 ∴4Tn=14+342+543++(2n-1)4n 兩式相減得3Tn=-1-2(41+42+43++4n-1)+(2n-1)4n= ∴Tn= 22.(1) (2) 在上 ,當時 等比且公比為,首項為 等比公比為,首項為1 ,所以的各項和為 23.解:(1)由已知得: 是首項為1,公差d=3的等差數(shù)列 (2) 由 24.解法:(I)證:由,有,   (II)

24、證:, ,,   是首項為5,以為公比的等比數(shù)列  (III)由(II)得,,于是   當時,  當時, 故 25.解:(1)由已知, ,,兩邊取對數(shù)得,即 是公比為2的等比數(shù)列. (2)由(1)知 = 26.(1)解:設數(shù)列公差為d(d>0)   ∵a1,a3,a9成等比數(shù)列,∴,即   整理得: ∵,∴  ?、?   ∵ ∴  ?、?   由①②得:, ∴ (2) ∴    27.(1) ① 取得

25、② ②①得: 中的奇數(shù)項是以為前項,4為公比的等比數(shù)列,偶數(shù)項是以的前項,4為公比的等比數(shù)列 (2)當為偶數(shù)時, 當為奇數(shù)時, 28.(Ⅰ) 驗證n=1時也滿足上式: (Ⅱ) 29.(1) 又 (2)① 又 ② 即 而 30.解(1)由題意知: 是等比數(shù)列 (2)由(1)知數(shù)列以是a2-a1=3為首項, 以2為公比的等比數(shù)列,所以 故a2-a1=320,所以a3-a2=321,a4-a3=322,…, 所以 (3) 設① 2② ①—②得: 31.解:(Ⅰ)設這二次函數(shù)f(x)=a

26、x2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得 a=3 , b=-2, 所以 f(x)=3x2-2x. 又因為點均在函數(shù)的圖像上,所以=3n2-2n. 當n≥2時,an=Sn-Sn-1=(3n2-2n)-=6n-5. 當n=1時,a1=S1=312-2=61-5,所以,an=6n-5 () (Ⅱ)由(Ⅰ)得知==, 故Tn===(1-). 因此,要使(1-)<()成立的m,必須且僅須滿足≤,即m≥10,所以滿足要求的最小正整數(shù)m為10. 32.解證:(Ⅰ) 當n≥2時, 故是以2為首項,以2為公差的等差數(shù)列. (Ⅱ)由(

27、Ⅰ)得 當n≥2時, 當n=1時, (Ⅲ) 33.解:(1), ∴數(shù)列是以為首項,-1為公差的等差數(shù)列, 。 (2)由,得。 。 而當時,。 。 (3)對任意, 所以,即。 是中的最大數(shù),。 設等差數(shù)列的公差為,則。 , , 是一個以-12為公差的等差數(shù)列, , 。 34.解:(Ⅰ)在直線 ∵P1為直線l與y軸的交點,∴P1(0,1) , 又數(shù)列的公差為1 (Ⅱ) (Ⅲ) 是以2為公比,4為首項的等比數(shù)列, 35.解:(Ⅰ)由題意知, ( ) ∵, ∴ ∴數(shù)列是首項,公

28、差的等差數(shù)列, 其通項為( ). (Ⅱ)∵,( ) ∴, 于是 兩式相減得 . ∴ ( ) (Ⅲ) ∵ , ( ) ∴當時, 當時,,即 ∴當時,取最大值是 又對一切正整數(shù)n恒成立 ∴ 即得或 36.(1)∵,∴,又∵ ∴ ∴數(shù)列是等差數(shù)列,且 (2)當時, 當n=1時,不成立. ∴ (3),∴. ∴左邊顯然成立. 37.解:(Ⅰ)當時, (1)時, 當時,;當時, (2)當時, 當時,;當時, 綜上所述,當或4時,;當時, (Ⅱ) 在上恒為增函數(shù)的充要條件是,解得 (Ⅲ), ① 當時,,即

29、 (1) 當n=1時,;當n≥2時, (2) (1)—(2)得,n≥2時,,即 又為等差數(shù)列,∴ 此時 ②當時 ,即 ∴ 若時,則(3),將(3)代入(1)得, 對一切都成立 另一方面,,當且僅當時成立,矛盾 不符合題意,舍去. 綜合①②知,要使數(shù)列成等差數(shù)列,則 38.(I)解:由 從而由 的等比數(shù)列 故數(shù)列 (II) 39.1 40.解:(I)令x=y=0,得f(0)=0。 又當x=0時,即。 ∴對任意時,都有。 為奇函數(shù)。 (II)滿足 。。 在上是奇函數(shù), ∴,即。 是以為首項,以2

30、為公比的等比數(shù)列。。 (III)=。 假設存在正整數(shù)m,使得對任意的, 有成立, 即對恒在立。 只需,即 故存在正整數(shù)m,使得對,有成立。 此時m的最小值為10。 41.解(1) (2)∵,∴, ∴。 ①當即時,函數(shù)在區(qū)間(-,-1]上是減函數(shù) ∴當時,即, 又,∴該方程沒有整數(shù)解; ②當,即時, ∴,解得或(舍去) 綜上所述,為所求的值 42.解:(I)由,得 或 ∴內的整點在直線和上,記直線為l,l與直線的交點的縱坐標分別為,則 (I

31、I) ∴當時,,且 是數(shù)列中的最大項,故 43.(Ⅰ) 解:由,, 可得, 所以為等差數(shù)列,其公差為1,首項為0,故,所以數(shù)列的通項公式為 (Ⅱ)解:設,  ?、?        ?、? 當時,①式減去②式, 得, 這時數(shù)列的前項和 當時, 這時數(shù)列的前項和 (Ⅲ)證明:通過分析,推測數(shù)列的第一項最大,下面證明:    ?、? 由知,要使③式成立,只要, 因為 所以③式成立 因此,存在,使得對任意均成立 44.解:(I) (II)假設符合條件的k(k∈N*)存在, 由于 ∴當k為正奇數(shù)時,k + 27為正

32、偶數(shù) 由 (舍) 當k為正偶數(shù)時,k + 27為正奇數(shù), 由 即(舍) 因此,符合條件的正整數(shù)k不存在 (III)將不等式變形并把代入得 設 又, 45.解:(Ⅰ)由 ,, 由題意知:的兩根, (Ⅱ), 為等差數(shù)列,,, 經檢驗時,是等差數(shù)列, (Ⅲ) 46.⑴由已知條件得, ① 當時,, ② ①-②得:,即, ∵數(shù)列的各項均為正數(shù),∴(), 又,∴; ∵, ∴,∴; ⑵∵, ∴, , 兩式相減得, ∴. 47.解:(1)由 相減得:是等比數(shù)列 (2), (3), ① ②

33、 ①-②得:, , 所以: 48.解: (1)根據對一切實數(shù)恒成立, 令,可得,; (2)設,則,解得 又恒成立,即恒成立, ,解得,, (3)由(2)得, 49.(Ⅰ)解:依題意,, 所以,解得,或,符合題意. (Ⅱ解不等式,即, 得 所以,要使成立,則 (1)當時,, 而,即,不滿足題意. (2)當時,,,,滿足題意. 綜上,. (Ⅲ)解:構造數(shù)列:, . 那么 . 不妨設取, 那么,,,, . 由,可得, (,). 因為,所以. 又,所以數(shù)列是無窮數(shù)列,因此構造的數(shù)列符合題意. 50.解:(Ⅰ)因為.所以. 令,得,即. (Ⅱ) 又 兩式相加 . 所以, 又.故數(shù)列是等差數(shù)列.分 (Ⅲ) 所以 第 31 頁 共 32 頁

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!