高考數(shù)學(xué) 備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 導(dǎo)數(shù)及應(yīng)用教師版
《高考數(shù)學(xué) 備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 導(dǎo)數(shù)及應(yīng)用教師版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 備考沖刺之易錯(cuò)點(diǎn)點(diǎn)睛系列專題 導(dǎo)數(shù)及應(yīng)用教師版(25頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 導(dǎo)數(shù)及應(yīng)用 一、高考預(yù)測(cè) 從近幾年考查的趨勢(shì)看,本專題考查的重點(diǎn)是導(dǎo)數(shù)在研究函數(shù)的單調(diào)性和極值中的應(yīng)用、導(dǎo)數(shù)在研究方程和不等式中的應(yīng)用,考查的形式是解答題考查導(dǎo)數(shù)在研究函數(shù)問(wèn)題中的綜合運(yùn)用,但常圍繞一些交叉點(diǎn)設(shè)計(jì)一些新穎的試題,大部分函數(shù)和導(dǎo)數(shù)的基礎(chǔ)試題難度也不大,但少數(shù)函數(shù)的基礎(chǔ)試題難度較大,解答題中的函數(shù)導(dǎo)數(shù)試題也具有一定的難度. 由于該專題的絕大多數(shù)內(nèi)容(除定積分)都是傳統(tǒng)的高中數(shù)學(xué)內(nèi)容,在考查上已經(jīng)基本穩(wěn)定(難度穩(wěn)定、考查重點(diǎn)穩(wěn)定、考查的分值穩(wěn)定),預(yù)計(jì)20xx年基本上還是這個(gè)考查趨勢(shì),具體為:以選擇題或者填空題的方式考查導(dǎo)數(shù)的幾何意義的應(yīng)用,定積分的計(jì)算及其簡(jiǎn)單應(yīng)用.
2、以解答題的方式考查導(dǎo)數(shù)在函數(shù)問(wèn)題中的綜合應(yīng)用,重點(diǎn)是使用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性和極值以及能夠轉(zhuǎn)化為研究函數(shù)的單調(diào)性、極值、最值問(wèn)題的不等式和方程等問(wèn)題,考查函數(shù)建模和利用導(dǎo)數(shù)解模. 導(dǎo)數(shù)及其應(yīng)用:要掌握好導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算、導(dǎo)數(shù)和函數(shù)的單調(diào)性與極值的關(guān)系,由于函數(shù)的極值和最值的解決是以函數(shù)的單調(diào)性為前提的,因此要重點(diǎn)解決導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的應(yīng)用,特別是含有字母參數(shù)的函數(shù)的單調(diào)性(這是高考考查分類(lèi)與整合思想的一個(gè)主要命題點(diǎn)),在解決好上述問(wèn)題后,要注意把不等式問(wèn)題、方程問(wèn)題轉(zhuǎn)化為函數(shù)的單調(diào)性、極值、最值進(jìn)行研究性訓(xùn)練,這是高考命制壓軸題的一個(gè)重要考查點(diǎn). 二、知識(shí)導(dǎo)學(xué) 要點(diǎn)
3、1:利用導(dǎo)數(shù)研究曲線的切線 1.導(dǎo)數(shù)的幾何意義:函數(shù)在處的導(dǎo)數(shù)的幾何意義是:曲線在點(diǎn)處的切線的斜率(瞬時(shí)速度就是位移函數(shù)對(duì)時(shí)間的導(dǎo)數(shù))。 2.求曲線切線方程的步驟:(1)求出函數(shù)在點(diǎn)的導(dǎo)數(shù),即曲線在點(diǎn)處切線的斜率;(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為。注:①當(dāng)曲線在點(diǎn)處的切線平行于軸(此時(shí)導(dǎo)數(shù)不存在)時(shí),由切線定義可知,切線方程為;②當(dāng)切點(diǎn)坐標(biāo)未知時(shí),應(yīng)首先設(shè)出切點(diǎn)坐標(biāo),再求解。 要點(diǎn)2:利用導(dǎo)數(shù)研究導(dǎo)數(shù)的單調(diào)性 利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的一般步驟。(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)①若求單調(diào)區(qū)間(或證明單調(diào)性),只需在函數(shù)的定義域內(nèi)解(或證明)不等式>0或
4、<0。②若已知的單調(diào)性,則轉(zhuǎn)化為不等式≥0或≤0在單調(diào)區(qū)間上恒成立問(wèn)題求解。 要點(diǎn)3:利用導(dǎo)數(shù)研究函數(shù)的極值與最值 1.在求可導(dǎo)函數(shù)的極值時(shí),應(yīng)注意:(以下將導(dǎo)函數(shù)取值為0的點(diǎn)稱為函數(shù)的駐點(diǎn)可導(dǎo)函數(shù)的極值點(diǎn)一定是它的駐點(diǎn),注意一定要是可導(dǎo)函數(shù)。例如函數(shù)在點(diǎn)處有極小值=0,可是這里的根本不存在,所以點(diǎn)不是的駐點(diǎn).(1) 可導(dǎo)函數(shù)的駐點(diǎn)可能是它的極值點(diǎn),也可能不是極值點(diǎn)。例如函數(shù)的導(dǎo)數(shù),在點(diǎn)處有,即點(diǎn)是的駐點(diǎn),但從在上為增函數(shù)可知,點(diǎn)不是的極值點(diǎn).(2) 求一個(gè)可導(dǎo)函數(shù)的極值時(shí),常常把駐點(diǎn)附近的函數(shù)值的討論情況列成表格,這樣可使函數(shù)在各單調(diào)區(qū)間的增減情況一目了然.(3) 在求實(shí)際問(wèn)題中的最大值
5、和最小值時(shí),一般是先找出自變量、因變量,建立函數(shù)關(guān)系式,并確定其定義域.如果定義域是一個(gè)開(kāi)區(qū)間,函數(shù)在定義域內(nèi)可導(dǎo)(其實(shí)只要是初等函數(shù),它在自己的定義域內(nèi)必然可導(dǎo)),并且按常理分析,此函數(shù)在這一開(kāi)區(qū)間內(nèi)應(yīng)該有最大(?。┲担ㄈ绻x域是閉區(qū)間,那么只要函數(shù)在此閉區(qū)間上連續(xù),它就一定有最大(?。?記住這個(gè)定理很有好處),然后通過(guò)對(duì)函數(shù)求導(dǎo),發(fā)現(xiàn)定義域內(nèi)只有一個(gè)駐點(diǎn),那么立即可以斷定在這個(gè)駐點(diǎn)處的函數(shù)值就是最大(?。┲?。知道這一點(diǎn)是非常重要的,因?yàn)樗趹?yīng)用一般情況下選那個(gè)不帶常數(shù)的。因?yàn)? 3.利用定積分來(lái)求面積時(shí),特別是位于軸兩側(cè)的圖形的面積的計(jì)算,分兩部分進(jìn)行計(jì)算,然后求兩部分的代數(shù)和. 三
6、、易錯(cuò)點(diǎn)點(diǎn)睛 命題角度 1導(dǎo)數(shù)的概念與運(yùn)算 1.設(shè),,…, ,n∈N,則 ( ) A.sinx B.-sinx C.cosx D.-cosx [考場(chǎng)錯(cuò)解] 選C [專家把脈] 由=,,f3(x) =(-sinx)’=-cosx, ,,故周期為4。 [對(duì)癥下藥] 選A 2.已知函數(shù)在x=1處的導(dǎo)數(shù)為3,的解析式可能為 ( ) A.=(x-1)3+32(x-1) B.=2x+1 C.=2(x-1)2 D.=-x+3 [考場(chǎng)錯(cuò)解] 選B ∵f(x)=2x+1,∴f’(x)=(2
7、x+1)’=2x+1|x=1=3. [專家把脈] 上面解答錯(cuò)誤原因是導(dǎo)數(shù)公式不熟悉,認(rèn)為(2x+1)’=2x+1.正確的是(2x+1)’=2,所以x=1時(shí)的導(dǎo)數(shù)是2,不是3。 =2e-xcosx令f’(x)=0,x=nπ+(n=1,2,3,…)從而xn=nπ+。f(xn)=e-( nπ+)(-1)n=-e. ∴數(shù)列{f(xn)}是公比為q=-e-π的等比數(shù)列。 [專家把脈] 上面解答求導(dǎo)過(guò)程中出現(xiàn)了錯(cuò)誤,即(e-x)’=e-x是錯(cuò)誤的,由復(fù)合函數(shù)的求導(dǎo)法則知(e-x)’=e-x(-x)’=-e-x才是正確的。 [對(duì)診下藥](1)證明:f’(x)=(e-x)’(cos+sinx)+e-
8、x(cosx+sinx)’ =-e-x(cosx+sinx) +e-x(-sinx+cos) =-2e-xsinx. 令f’(x)=0得-2e-xsinx=0,解出x=nπ,(n為整數(shù),從而xn=nπ(n=1,2,3,…), f(xn)=(-1)ne-nπ,所以數(shù)列|f(xn)|是公比q=-e-π的等比數(shù)列,且首項(xiàng)f(x1)=-e-π (2)Sn=x1f(x1)+x2f(x2)+…+xnf(xn)=nq(1+2q+…+nqn-1) aSn=πq(q+2q2+…+nqn)=πq(-nqn)從而Sn=(-nqn) ∵|q|=e-π<1 ∴qn=0,∴ 專家會(huì)診1.理解導(dǎo)數(shù)的概念時(shí)
9、應(yīng)注意導(dǎo)數(shù)定義的另一種形式:設(shè)函數(shù)f(x)在x=a處可導(dǎo),則的運(yùn)用。2.復(fù)合函數(shù)的求導(dǎo),關(guān)鍵是搞清復(fù)合關(guān)系,求導(dǎo)應(yīng)從外層到內(nèi)層進(jìn)行,注意不要遺漏3.求導(dǎo)數(shù)時(shí),先化簡(jiǎn)再求導(dǎo)是運(yùn)算的基本方法,一般地,分式函數(shù)求導(dǎo),先看是否化為整式函數(shù)或較簡(jiǎn)單的分式函數(shù);對(duì)數(shù)函數(shù)求導(dǎo)先化為和或差形式;多項(xiàng)式的積的求導(dǎo),先展開(kāi)再求導(dǎo)等等。 命題角度 2導(dǎo)數(shù)幾何意義的運(yùn)用 1.曲線y=x3在點(diǎn)(1,1)的切線與x軸、直線x=2所圍成的三角形面積為_(kāi)________. [考場(chǎng)錯(cuò)解] 填2 由曲線y=x3在點(diǎn)(1,1)的切線斜率為1,∴切線方程為y-1==x-1,y=x.所以三條直線y=x,x=0,x=2所圍成的三角
10、形面積為S=22=2。 [專家把脈] 根據(jù)導(dǎo)數(shù)的幾何意義,曲線在某點(diǎn)處的切線斜率等于函數(shù)在這點(diǎn)處的導(dǎo)數(shù),上面的解答顯然是不知道這點(diǎn),無(wú)故得出切線的斜率為1顯然是錯(cuò)誤的。 [對(duì)癥下藥] 填。∵=3x2 當(dāng)x=1時(shí)f’(1)=3.由導(dǎo)數(shù)的幾何意義知,曲線在點(diǎn)(1,1)處的斜率為3。即切線方程為y-1=3(x-1) 得y=3x-2.聯(lián)立得交點(diǎn)(2,4)。又y=3x-2與x軸交于(,0)?!嗳龡l直線所圍成的面積為S=4(2-)=。 2.設(shè)t≠0,點(diǎn)P(t,0)是函數(shù)=x3+ax與g(x)=bx3+c的圖像的一個(gè)公共點(diǎn),兩函數(shù)的圖像在P點(diǎn)處有相同的切線。(1)用t表示a、b、c;(2)若函數(shù)
11、y=f(x)-g(x)在(-1,3)上單調(diào)遞減,求t的取值范圍。 [考場(chǎng)錯(cuò)解] (1)∵函數(shù)=x3+ax與g(x)=bx2+c的圖像的一個(gè)公共點(diǎn)P(t,0).∴f(t)=g(t)t3+at=bt2+c. ①又兩函數(shù)的圖像在點(diǎn)P處有相同的切線,∴f’(t)=g’(t) 3t3+a=2bt. ②由①得b=t,代入②得a=-t2.∴c=-t3. [專家把脈] 上面解答中得b=t理由不充足,事實(shí)上只由①、②兩式是不可用t表示a、b、c,其實(shí)錯(cuò)解在使用兩函數(shù)有公共點(diǎn)P,只是利用f(t)=g(t)是不準(zhǔn)確的,準(zhǔn)確的結(jié)論應(yīng)是f(t)=0,即t3+at=0,因?yàn)閠≠0,所以a=-t2.g(t)=0即bt2
12、+c=0,所以c=ab又因?yàn)閒(x)、g(x)在(t,0)處有相同的切線,
所以f’(t)=g;(t).即3t2+a=2bt, ∵a=-t2, ∴b=t.因此c=ab=-t2t=-t3.故a=-t2,b=t,c=-t3
(2)解法1 y=-g(x)=x3-t2x-tx2+t3 y’=3x2-2tx-t2=(3x+t)(x-t).
當(dāng)y’=(3x+t)(x-t)<0時(shí),函數(shù)y=f(d)-g(x)單調(diào)遞減。 由y’<0,若t<0,則t 13、-≥3。即t≤-9或t≥3。又當(dāng)-9 14、)上是增函數(shù)。
若x∈[-1,1]時(shí),f’(x) ≤0,故f9x)在[-1,1]上是減函數(shù)。
∴f(-1)=2是極大值。f(1)=-2是極小值。
(2)解:曲線方程為y==x3-3x,點(diǎn)A(0,16)不在曲線上。設(shè)切點(diǎn)M(x0,y0),則點(diǎn)M在曲線上,
∴y0=x30-3x0.因f’(x0)=3x20-3.故切線的方程為y-y0=(3x20-3)(x-x0). ∵點(diǎn)A(0,16)在曲線上,有16-(x20-0)=3(x20-1)(0-x0),化簡(jiǎn)得x30=-8,得x0=-2.
專家會(huì)診 設(shè)函數(shù)y=f(x),在點(diǎn)(x0,y0)處的導(dǎo)數(shù)為f’(x0),則過(guò)此點(diǎn)的切線的斜率為f’(x0) 15、,在此點(diǎn)處的切線方程為y-y0=f’(x0)(x-x0).利用導(dǎo)數(shù)的這個(gè)幾何意義可將解析幾何的問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題求解。
命題角度 3導(dǎo)數(shù)的應(yīng)用
1.(典型例題)已知函數(shù)=-x3+3x2+9x+a.(1)求的單調(diào)遞減區(qū)間;(2)若在區(qū)間[-2,2]上最大值為20,求它在該區(qū)間上的最小值。
[考場(chǎng)錯(cuò)解](1)=-3x2+6x+9,令<0,解得x<-1或x>3,∴函數(shù)的音調(diào)遞減區(qū)間為(-∞,-1)(3,+∞)
(2)令=0,得x=-1或x=3當(dāng)-2 16、=20,∴a=-7.的最小值為f(-1)=-1+3-9+a=-14.
[專家把脈] 在閉區(qū)間上求函數(shù)的最大值和最小值,應(yīng)把極值點(diǎn)的函數(shù)值與兩端點(diǎn)的函數(shù)值進(jìn)行比較大小才能產(chǎn)生最大(小)值點(diǎn),而上面解答題直接用極大(?。┲堤娲畲螅ㄐ。┲?,這顯然是錯(cuò)誤的。
[專家把脈] 當(dāng)>0時(shí),是減函數(shù),但反之并不盡然,如=-x3是減函數(shù),=3x2并不恒小于0,(x=0時(shí)=0).因此本題應(yīng)該有在R上恒小于或等于0。
[對(duì)癥下藥] 函數(shù)的導(dǎo)數(shù):=3x2+6x-1.
當(dāng)=3ax2+6x-1<0對(duì)任何x∈R恒成立時(shí),在R上是減函數(shù)。
①對(duì)任何x∈R,3ax2+6x-1<0恒成立,a<0且△=36+12a 17、<0a<-3.
所以當(dāng)a<-3時(shí),由<0對(duì)任何x∈R恒成立時(shí),在R上是減函數(shù)。
②當(dāng)a=-3時(shí), =-3x3+3x2-x+1=-3(x-)3+.
由函數(shù)y=x3在R上的單調(diào)性知,當(dāng)a=-3時(shí),在R上是減函數(shù)。
③當(dāng)a>-3時(shí),f’(x)=3ax2+6x-1>0在R上至少可解得一個(gè)區(qū)間,所以當(dāng)a>-3時(shí),是在R上的減函數(shù)。綜上,所求a的取值范圍是(-∞,-3)。
3.已知a∈R,討論函數(shù)=ex(x2+ax+a+1)的極值點(diǎn)的個(gè)數(shù)。
[對(duì)癥下藥] =ex(a2+ax+a+1)+ex(2x+a)=ex[x2+(a+2)x+(2a+1)]
令=0得x2+(a+2)x+(2a+1)=0. 18、
(1)當(dāng)△=(a+2)2-4(2a+1)=a2-4a=a(a-4)>0即a<0或a>4時(shí),方程x2+(a+2)x+(2a+1)=0有兩個(gè)不同的實(shí)根x1、x2,不妨設(shè)x1 19、x 20、]內(nèi)有兩個(gè)實(shí)根。
[考場(chǎng)錯(cuò)解] 令≥0,x≥ln(x+m).∴m≤ex-x ∴m取小于或等于ex-x的整數(shù)。
[專家把脈] 上面解答對(duì)題意理解錯(cuò)誤,原題“當(dāng)m為何值時(shí),≥0恒成立”,并不是對(duì)x的一定范圍成立。因此,m≤ex-x這個(gè)結(jié)果顯然是錯(cuò)誤的。
[對(duì)癥下藥] (1)函數(shù)=x-ln(x+m),x∈(-m,+ ∞)連續(xù),且f’(x)=1-,令f’(x)=0,得x=1-m.當(dāng)-m 21、,≥0.即m≤1且m∈Z時(shí),≥0.
(2)證明:由(1)可知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,f(e-m-m)=e-m-m-ln(e-m-m+m)=e-m>0,又為連續(xù)函數(shù),且當(dāng)m>1時(shí),f(e-m-m)與f(1-m)異號(hào),由所給定理知,存在唯一的x1∈(e-m-m;1-m),使f(x1)=0,而當(dāng)m>1時(shí),f(e2m-m)=e2m-3m>(1+1)2m-3m>1+2m+-3m>0.(∵m>12m-1>1).
類(lèi)似地,當(dāng)整數(shù)m>1時(shí),=x-ln(x+m)在[1-m,e2m-m]上為連續(xù)增函數(shù),且f(1-m)與f(e2m-m) ∵x<10時(shí),V’>0,10 22、>36時(shí)V’>0.所以,當(dāng)x=10時(shí)V有最大值V(10)=1960cm3
又V(0)=0,V(24)=0所以當(dāng)x=10時(shí),V有最大值V(10)=1960。所以該窗口的高為10cm,容器的容積最大,最大容積是1960cm3.
專家會(huì)診1.證函數(shù)在(a,b)上單調(diào),可以用函數(shù)的單調(diào)性定義,也可用導(dǎo)數(shù)來(lái)證明,前者較繁,后者較易,要注意若在(a、b)內(nèi)個(gè)別點(diǎn)上滿足=0(或不存在但連續(xù))其余點(diǎn)滿足>0(或<0)函數(shù)仍然在(a、b)內(nèi)單調(diào)遞增(或遞減),即導(dǎo)數(shù)為零的點(diǎn)不一定是增、減區(qū)間的分界點(diǎn)。
2.函數(shù)的極值是在局部對(duì)函數(shù)值的比較,函數(shù)在區(qū)間上的極大值(或極小值)可能有若干個(gè),而且有時(shí)極小值大于它 23、的極大值,另外,=0是可導(dǎo)數(shù)f(x)在x=x0處取極值的必要而不充分條件,對(duì)于連續(xù)函數(shù)(不一定處處可導(dǎo))時(shí)可以是不必要條件。
3.函數(shù)的最大值、最小值,表示函數(shù)f(x)在整個(gè)區(qū)間的情況,即是在整體區(qū)間上對(duì)函數(shù)值(Ⅱ)由(Ⅰ)得且則
由,解得或;,解得或;,解得
的遞增區(qū)間為:和;遞減區(qū)間為:又
要有兩個(gè)根,則有兩解,由函數(shù)的單調(diào)性可得:。
2、設(shè)函數(shù),.(Ⅰ)試問(wèn)函數(shù)能否在時(shí)取得極值?說(shuō)明理由;(Ⅱ)若,當(dāng)時(shí),與的圖象恰好有兩個(gè)公共點(diǎn),求的取值范圍.
【解析】:(Ⅰ) , 令, …… 2分
當(dāng)時(shí),,在上單調(diào)遞增,函數(shù)無(wú)極值.所以在處無(wú)極值.… 4分
(Ⅱ),,令,,,或 24、
正
負(fù)
正
單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
與的圖象恰好有兩個(gè)公共點(diǎn),等價(jià)于的圖象與直線恰好有兩個(gè)交點(diǎn)
或………………… 12分
3、已知函數(shù)的圖象經(jīng)過(guò)點(diǎn),曲線在點(diǎn)處的切線恰好與直線垂直。(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍。
【解析】:(Ⅰ) 的圖象經(jīng)過(guò)點(diǎn),?!?分又,則。由條件知,即。…4分聯(lián)立解得6分
(Ⅱ),,令,解得,或。…8分
函數(shù)在區(qū)間上單調(diào)遞增,?!?0分
則,即…12分
4、已知函數(shù)(Ⅰ)若曲線在點(diǎn)處的切線方程為,求函數(shù)解析式;(Ⅱ) 求函 25、數(shù)的單調(diào)區(qū)間;(Ⅲ) 若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
對(duì)任意的成立.從而得所以滿足條件的取值范圍是……….13分
5、若定義在上的函數(shù)同時(shí)滿足以下條件:① 在上是減函數(shù),在上是增函數(shù); ② 是偶函數(shù);③ 在處的切線與直線垂直. (Ⅰ)求函數(shù)的解析式;(Ⅱ)設(shè),若存在,使,求實(shí)數(shù)的取值范圍
【解析】:(Ⅰ),∵ 在上是減函數(shù),在上是增函數(shù),
∴, ()由是偶函數(shù)得:,又在處的切線與直線垂直,,代入()得:即....5分
(Ⅱ)由已知得:若存在,使,即存在,使.
設(shè),則,.....8分
令=0,∵,∴, 當(dāng)時(shí),,∴在上為減函數(shù),當(dāng)時(shí),,∴在上為增函數(shù),∴在上有最大值. 26、
又,∴最小值為. 于是有為所求..13分
6、設(shè)函數(shù)(Ⅰ) 當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性.(Ⅲ)若對(duì)任意及任意,恒有
成立,求實(shí)數(shù)的取值范圍.
【解析】:(Ⅰ)函數(shù)的定義域?yàn)? 當(dāng)時(shí),2分
當(dāng)時(shí),當(dāng)時(shí),無(wú)極大值. 4分
(Ⅱ) 5分
當(dāng),即時(shí),在定義域上是減函數(shù);
當(dāng),即時(shí),令得或
令得當(dāng),即時(shí),令得或
令得 綜上,當(dāng)時(shí),在上是減函數(shù);
當(dāng)時(shí),在和單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),在和單調(diào)遞減,在上單調(diào)遞增;8分
即 .令,解得:或.
當(dāng)時(shí),,故的單調(diào)遞增區(qū)間是.……3分
當(dāng)時(shí),,隨的變化情況如下:
27、
[
極大值
極小值
所以,函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.……5分
當(dāng)時(shí),,隨的變化情況如下:
極大值
極小值
所以,函數(shù)的單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.…7分
(Ⅱ)當(dāng)時(shí),的極大值等于. 理由如下:當(dāng)時(shí),無(wú)極大值.
當(dāng)時(shí), 的極大值為,…8分
令,即解得 或(舍)…9分 當(dāng)時(shí),的極大
值為.……10分因?yàn)?,所以 .因?yàn)?,所以
的極大值不可能等于.綜上所述,當(dāng)時(shí),的極大值等于……12分
8、已知函數(shù)(是自然對(duì)數(shù)的底數(shù))(Ⅰ)若對(duì)于任意恒成立,試 28、確定實(shí)數(shù)的取值范圍;(Ⅱ)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與在上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
【解析】:(Ⅰ)①當(dāng)時(shí),在上單調(diào)遞增,且當(dāng)時(shí),,,故不恒成立,所以不合題意;②當(dāng)時(shí),對(duì)恒成立,所以符合題意;
③當(dāng)時(shí)令,得,當(dāng)時(shí),,當(dāng)時(shí),,故在上是單調(diào)遞減,在上是單調(diào)遞增, 所以又,,綜上:.
(Ⅱ)當(dāng)時(shí),由(2)知,
設(shè),則,
【解析】:(1)
,,
(Ⅱ)因?yàn)?,所以恒成立求的最小?
令
故在(2,+∞)上為增函數(shù)
,,
所以最小值點(diǎn)滿足,∴
當(dāng)
∵ ∴
∴
故:
10、已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間 29、上的最大值與最小值;(Ⅱ)若存在,使,求的取值范圍.
【解析】:(Ⅰ)由 則 得
知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.-- -----------(4分)
故.又,,故.---------------(2分)
(Ⅱ)依題意,只需,.則依
①當(dāng)時(shí),得,知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
故 得.---------(3分)
②當(dāng)時(shí),,知在區(qū)間上單調(diào)遞減.
不成立.綜上所述,所求的取值范圍是---------------(3分)
11、函數(shù)(x)=x2―x―lnx. (Ⅰ)求函數(shù)(x)的單調(diào)區(qū)間;(Ⅱ)是否存在實(shí)數(shù)m,n,同時(shí)滿足下列條件①1≤m 30、=(x)―k在x∈[m,n]時(shí)的值域是[m,n]?若存在,求出m的取值范圍;若不存在,并說(shuō)明理由.
【解析】:(Ⅰ),…3分……5分
所以:遞增區(qū)間是,遞減區(qū)間是;……6分
(Ⅱ)因?yàn)樵谑菃握{(diào)遞增的,所以當(dāng)時(shí),的值域?yàn)?,所以在時(shí)的值域是等價(jià)于:在區(qū)間上有兩不同解…8分設(shè),則,
由得…10分所以在上單調(diào)遞減,在上遞增,…11分
且,所以:存在,.…………………13分
12、設(shè)函數(shù) (I)若函數(shù)f(x)在x=1處與直線y=相切, ①求實(shí)數(shù)a,b的值; ②求函數(shù)f(x)在[土,e]上的最大值.(II)當(dāng)b=0時(shí),若不等式f(x)≥m+x對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍,
立 31、,則對(duì)所有的都成立,即對(duì)所有的都成立,令為一次函數(shù), 上單調(diào)遞增,對(duì)所有的都成立…12分
(注:也可令對(duì)所有的都成立,分類(lèi)討論得對(duì)所有的都成立,,請(qǐng)根據(jù)過(guò)程酌情給分)
13、已知函數(shù)(Ⅰ)求函數(shù)的極值點(diǎn);(Ⅱ)若直線過(guò)點(diǎn)且與曲線相切,求直線的方程;(Ⅲ)設(shè)函數(shù)其中求函數(shù)在上的最小值.( )
【解析】:(Ⅰ)>0 1分而>0lnx+1>0><0<00<<所以在上單調(diào)遞減,在上單調(diào)遞增.………………3分
所以是函數(shù)的極小值點(diǎn),極大值點(diǎn)不存在.…………………4分
(Ⅱ)設(shè)切點(diǎn)坐標(biāo)為,則切線的斜率為
所以切線的方程為 …………6分
又切線過(guò)點(diǎn),所以有
解得所以直線的方程為…… 32、…8分
(Ⅲ),則<0<00<<>0>所以在上單調(diào)遞減,在上單調(diào)遞增.………………9分
當(dāng)即時(shí),在上單調(diào)遞增,所以在上的最小值為……10分
當(dāng)1<<e,即1<a<2時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
在上的最小值為 ………12分
當(dāng)即時(shí),在上單調(diào)遞減,
所以在上的最小值為……13分
綜上,當(dāng)時(shí),的最小值為0;當(dāng)1<a<2時(shí),的最小值為;
當(dāng)時(shí),的最小值為………14分
14、己知函數(shù)(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)函數(shù)
是否存在實(shí)數(shù)a、b、c∈[0,1],使得若存在,求出t的取值范圍;若不存在,說(shuō)明理由.
得.…8分③當(dāng)時(shí),在上,,在上單調(diào)遞減,
在上,,在上單調(diào) 33、遞增,…9分
即.(*) 由(1)知在上單調(diào)遞減,
故,而,不等式(*)無(wú)解. ……11分
綜上所述,存在,使得命題成立. …12分
15、已知函數(shù)(Ⅰ)試判斷函數(shù)的單調(diào)性,并說(shuō)明理由;(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)求證: .
【解析】:(Ⅰ) 故在遞減 …3分
(Ⅱ) 記………5分
再令在上遞增。
,從而 故在上也單調(diào)遞增
………8分
(Ⅲ)方法1:由(Ⅱ)知:恒成立,即
令 則 ………10分 ,,… 12分疊加得:
…… 14分
方法2:用數(shù)學(xué)歸納法證明(略)。
16、已知函數(shù).(Ⅰ)分別 34、求函數(shù)和的圖象在處的切線方程;(Ⅱ)證明不等式;(Ⅲ)對(duì)一個(gè)實(shí)數(shù)集合,若存在實(shí)數(shù),使得中任何數(shù)都不超過(guò),則稱是的一個(gè)上界.已知是無(wú)窮數(shù)列所有項(xiàng)組成的集合的上界(其中是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的最大值.
【解析】:(Ⅰ),則,且
,所以函數(shù)和的圖象在處的切線方程都是……3分
(Ⅱ)令函數(shù),定義域是,
,
設(shè),則,
令,則,
當(dāng)時(shí),,在上為增函數(shù),
,設(shè),則
………10分
由(Ⅱ)知,,即,
所以,于是在上為減函數(shù).
故函數(shù)在上的最小值為,所以的最大值為………13分
17、 已知函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)對(duì)于任意正實(shí)數(shù),不等式
恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ) 35、求證:當(dāng)時(shí),對(duì)于任意正實(shí)數(shù),不等式恒成立.
構(gòu)造函數(shù),則問(wèn)題就是要求恒成立. (9分)
對(duì)于求導(dǎo)得 .
令,則,顯然是減函數(shù). 當(dāng)時(shí),,從而函數(shù)在上也是減函數(shù).從而當(dāng)時(shí),,即,即函數(shù)在區(qū)間上是減函數(shù).當(dāng)時(shí),對(duì)于任意的非零正數(shù),,進(jìn)而有恒成立,結(jié)論得證. (12分)
18、設(shè)函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對(duì)任意的都有成立,求實(shí)數(shù)的取值范圍.
【解析】:(Ⅰ)當(dāng)時(shí),,,…2分
所以曲線在處的切線方程為
(Ⅱ)使得成立,等價(jià)于…4分
考慮
0
2
0
-
0
+
36、
遞減
極(最)小值
遞增
1
由上表可知,…………………………7分
所以滿足條件的最大整數(shù) …………8分
(Ⅲ)對(duì)任意的,都有,等價(jià)于:在區(qū)間上,函數(shù)的最小值不小于的最大值……9分有(2)知,在區(qū)間上,的最大值為
,等價(jià)于恒成立…………………………10分
記 …………………11分
記由于,
,所以在上遞減,
當(dāng)時(shí),,時(shí),
所以,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.………4分
(Ⅱ)(法1)對(duì)任意的正實(shí)數(shù),且,取,則,由(1)得,
即,所以,①…6分
取,則,由(1)得,
即,
所以,……②.
綜合①②,得.…………8分
(法2)因?yàn)椋?,?dāng)時(shí),;當(dāng)時(shí),.
(Ⅲ)對(duì),令(),則
,
顯然,,所以,
所以,在上單調(diào)遞減.由,得,
即.所以,.……10分
所以
. ……12分又由(2)知,所以..
所以,.……14分
20、已知函數(shù)的圖象在處的切線與直線平行.(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)若方程在上有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;(Ⅲ)設(shè)常數(shù)
,數(shù)列滿足(),.求證:.
【解析】:(Ⅰ), -----3分
(Ⅱ)由(Ⅰ),
設(shè),得,
,
------9分
(Ⅲ)證明:由
當(dāng)x>0時(shí),
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見(jiàn)突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車(chē)場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門(mén)領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)