人教版 小學9年級 數學上冊 期末試題及答案
精品資料人教版初中數學 第一學期期末考試九年級數學試題(90分鐘完成)總 評 等 級一、選擇題(每小題給出四個選項中只有一個是正確的,請把你認為正確的選項選出來,并將該選項的字母代號填入下表中)題號12345678910答案1如果a為任意實數,下列根式一定有意義的是ABCD2關于x的一元二次方程(m1)x2+3x+m21=0的一根為0,則m的值是A.1 B.2 C.-1 D.-23下列的配方運算中,不正確的是Ax2+8x+9=0化為(x+4)2=25 B2t27t4=0化為 Cx22x99=0化為(x1)2=100 D3x24x2=0化為 4下列說法正確的是A. 平分弦的直徑垂直于弦 B. 半圓(或直徑)所對的圓周角是直角C. 相等的圓心角所對的弧相等 D. 若兩個圓有公共點,則這兩個圓相交5若O1與O2相切,O1的半徑為3cm,O2的半徑為2cm,則O1O2的長是A1cm B5cm C1cm或5cm D0.5cm或2.5cm6下列說法中錯誤的是A. 某種彩票的中獎率為1%,買100張彩票一定有1張中獎 B. 從裝有10個紅球的袋子中,摸出1個白球是不可能事件C. 為了解一批日光燈的使用壽命,可采用抽樣調查的方式 D. 擲一枚普通的正六面體骰子,出現(xiàn)向上一面點數是2的概率是7下列二次函數中,圖象以直線x=2為對稱軸、且經過點(0,1)的是A BC D 8“六一”兒童節(jié),某玩具超市設立了一個如圖所示的可以自由轉動的轉盤,開展有獎購買活動顧客購買玩具就能獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一區(qū)域就可以獲得相應獎品下表是該活動的一組統(tǒng)計數據轉動轉盤的次數n1001502005008001000落在“鉛筆”區(qū)域的次數m68108140355560690落在“鉛筆”區(qū)域的頻率0.680.720.700.710.700.69下列說法不正確的是A當n很大時,估計指針落在“鉛筆”區(qū)域的頻率大約是0.70B假如你去轉動轉盤一次,獲得鉛筆的概率大約是0.70C如果轉動轉盤2000次,指針落在“文具盒”區(qū)域的次數大約有600次D轉動轉盤10次,一定有3次獲得文具盒第8題圖第9題圖第10題圖9. 如圖,RtABC繞O點逆時針旋轉90得RtBDE,其中AC=3,DE=5,ABD=ACB=BED=90,則OC的長為A. B. C. D.10如圖所示為二次函數y=ax2+bx+c(a0)的圖象,在下列選項中錯誤的是A. ac0 B. x1時,y隨x的增大而增大C. a+b+c0 D. 方程ax2+bx+c=0的根是x1=1,x2=3二、填空題:11方程的根是_ _12. 當k_時,關于x的一元二次方程x2+6kx+3k2+6=0有兩個相等的實數根13某種傳染病,若有一人感染,經過兩輪傳染后將共有49人感染設這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為_ _14已知一個正六邊形內接于O,如果O的半徑為4 cm,那么這個正六邊形的面積為 _ cm 2第16題圖15對于下列圖形:等邊三角形; 矩形; 平行四邊形; 菱形; 正八邊形;圓.其中既是軸對稱圖形,又是中心對稱圖形的是 .(填寫圖形的相應編號)16小明把如圖所示的矩形紙板掛在墻上,玩飛鏢游戲(每次飛鏢均落在紙板上),則飛鏢落在陰影區(qū)域的概率是_17如圖,ABC內接于O,B=OAC,OA=8cm,則AC=_cm第17題圖第18題表x101y22018. 已知二次函數y =ax2+bx+c(a0)中自變量x和函數值y的部分對應值如上表,則該二次函數解析式的一般形式為_ _ _三、解答題:19.計算:(1) (2) 20.解方程:第21題圖21.如圖,AB是O直徑,CB是O的切線,切點為B,OC平行于弦AD求證:DC是O的切線22在一個不透明的盒子中放有三張卡片,每張卡片上寫有一個實數,分別為3,(卡片除了實數不同外,其余均相同)(1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數是無理數的概率;(2)先從盒子中隨機抽取一張卡片,將卡片上的實數作為被減數;卡片不放回,再隨機抽取一張卡片,將卡片上的實數作為減數,請你用列表法或樹形圖法,求出兩次抽取的卡片上的實數之差恰好為有理數的概率23.菜農李明種植的某蔬菜計劃以每千克5元的單價對外批發(fā)銷售,由于部分菜農盲目擴大種植,造成該蔬菜滯銷李明為了加快銷售,減少損失,對價格經過兩次下調后,以每千克3.2元的單價對外批發(fā)銷售(1)求平均每次下調的百分率;(2)張華準備到李偉處購買5噸該蔬菜,因數量多,李明決定再給予兩種優(yōu)惠方案以供選擇:方案一:打九折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金200元試問張華選擇哪種方案更優(yōu)惠,請說明理由第24題圖24.如圖,三角板ABC中,ACB=90,AB=2,A=30,三角板ABC繞直角頂點C順時針旋轉90得到A1B1C,求:(1)的長;(2)在這個旋轉過程中三角板AC邊所掃過的扇形ACA1的面積;(3)在這個旋轉過程中三角板所掃過的圖形面積.第25題圖25如圖,已知拋物線y=ax2+bx+c(a0)與x軸相交于點A(-2,0)和點B,與y軸相交于點C,頂點D(1,- ).(1)求拋物線對應的函數關系式;(2)求四邊形ACDB的面積;(3)若平移(1)中的拋物線,使平移后的拋物線與坐標軸僅有兩個交點,請直接寫出如何平移及所得拋物線的解析式(只寫兩種情況即可).26.某商品進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元)設每件商品的售價上漲x元(x為正整數),每個月銷售利潤為y元(1)求y與x的函數關系式并直接寫出自變量x的取值范圍;(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?20132014學年第一學期九年級數學試題參考答案及評分標準一、選擇題:(每題3分,共30分)題號 12345678910答案CCABCACDBC二、填空題:(每題3分,共24分)11; 121; 13形式不唯一,比如x(x+1)+x+1=49或都可以; 14; 15; 16; 178; 18y= x2+x2三、解答題:(共46分)19.(1) 解:原式=23 1分=123=9 3分(2) 原式=56+9+119 5分=166 6分20. 解:移項得 2(x3)3x(x3)=0整理得 (x3)(23x)=0 2分x3=0或23x=0解得 x1=3,x2= 4分21. 證明:連接OD;OA=OD,A=ADOADOC,A=BOC,ADO=CODBOC=COD 2分又OB=OD,OC=OC,OBCODC OBC=ODC. 3分BC是O的切線 OBC=90 4分ODC=90DC是O的切線 5分22. 解:(1)從盒子中隨機抽取一張卡片,卡片上的實數是無理數的概率是; 2分(2)畫樹形圖得 4分共有6種等可能的結果,兩次好抽取的卡片上的實數之差為有理數的有2種情況,兩次抽取卡片上的實數之差恰好為有理數的概率為 = 5分23. 解:(1)設平均每次下調的百分率為x由題意,得5(1x)2=3.2 2分解這個方程,得x1=0.2,x2=1.8 3分因為降價的百分率不可能大于1,所以x2=1.8不符合題意,符合題目要求的是x1=0.2=20%答:平均每次下調的百分率是20% 4分(2)張華選擇方案一購買更優(yōu)惠理由:方案一所需費用為:3.20.95000=14400(元),方案二所需費用為:3.250002005=15000(元)1440015000,張華選擇方案一購買更優(yōu)惠 6分24. 解:(1)ACB=90,AB=2,A=30,BC=AB=2=1,根據勾股定理,AC=,的長=; 2分(2)扇形ACA1的面積=;3分(3)設與AB相交于D,ACB=90,A=30,B=9030=60,又BC=CD,BCD是等邊三角形,BD=BC=1,AD=ABBD=21=1,SACD=SABC=1=, 4分三角板所掃過的圖形面積=S扇形BCD+S扇形ACA1+SACD,=+,=+ 6分25.解:(1)設二次函數為 y=a(x-1)2-, 1分將A(-2,0)坐標代入求得,a=, y=(x-1)2- 3分(2)令y=0,得x1=-2,x2=4,B(4,0),令x=0, 得y=-4,C(0,-4), 4分S四邊形ACDB=15.四邊形ACDB的面積為15. 5分(3)如:向上平移個單位,y= (x-1)2; 向上平移4個單位,y=(x-1)2-;向右平移2個單位,y=(x-3)2-;向左平移4個單位y=(x+3)2-. (只要正確寫出兩種情況即可)7分26.解:(1)由題意得:y=(21010x)(50+x40)1分=10x2+110x+2100(0x15且x為整數); 3分(2)由(1)中的y與x的解析式配方得:y=10(x5.5)2+2402.5a=100,當x=5.5時,y有最大值2402.5 5分0x15,且x為整數,當x=5時,50+x=55,y=2400(元),當x=6時,50+x=56,y=2400(元)當售價定為每件55或56元,每個月的利潤最大,最大的月利潤是2400元 7分