高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案

上傳人:仙*** 文檔編號:42394468 上傳時間:2021-11-26 格式:DOC 頁數(shù):4 大?。?47KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案_第1頁
第1頁 / 共4頁
高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案_第2頁
第2頁 / 共4頁
高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)北師大版選修22教案:第2章 變化的快慢與變化率 第一課時參考教案(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2019版數(shù)學(xué)精品資料(北師大版) 1變化的快慢與變化率 第一課時 變化的快慢與變化率——平均變化率 一、教學(xué)目標(biāo):1、理解函數(shù)平均變化率的概念; 2、會求給定函數(shù)在某個區(qū)間上的平均變化率,并能根據(jù)函數(shù)的平均變化率判斷函數(shù)在某區(qū)間上變化的快慢。 二、教學(xué)重點:從變化率的角度重新認(rèn)識平均速度的概念,知道函數(shù)平均變化率就是函數(shù)在某區(qū)間上變化的快慢的數(shù)量描述。 教學(xué)難點:對平均速度的數(shù)學(xué)意義的認(rèn)識 三、教學(xué)方法:探析歸納,講練結(jié)合 四、教學(xué)過程 (一)、客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數(shù)學(xué)中引入了變量的概念后,就有可能把運動現(xiàn)象用數(shù)學(xué)來加

2、以描述了。由于函數(shù)概念的產(chǎn)生和運用的加深,也由于科學(xué)技術(shù)發(fā)展的需要,一門新的數(shù)學(xué)分支就繼解析幾何之后產(chǎn)生了,這就是微積分學(xué)。微積分學(xué)這門學(xué)科在數(shù)學(xué)發(fā)展中的地位是十分重要的,可以說它是繼歐氏幾何后,全部數(shù)學(xué)中的最大的一個創(chuàng)造。 從微積分成為一門學(xué)科來說,是在十七世紀(jì),但是,微分和積分的思想在古代就已經(jīng)產(chǎn)生了。公元前三世紀(jì),古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉(zhuǎn)雙曲體的體積的問題中,就隱含著近代積分學(xué)的思想。十七世紀(jì),有許多科學(xué)問題需要解決,這些問題也就成了促使微積分產(chǎn)生的因素。歸結(jié)起來,大約有四種主要類型的問題: 第一類是研究運動的時候直接出現(xiàn)的,也就是求即

3、時速度的問題。 第二類問題是求曲線的切線的問題。 第三類問題是求函數(shù)的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當(dāng)大的物體作用于另一物體上的引力。 十七世紀(jì)的許多著名的數(shù)學(xué)家、天文學(xué)家、物理學(xué)家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創(chuàng)立做出了貢獻(xiàn)。 十七世紀(jì)下半葉,在前人工作的基礎(chǔ)上,英國大科學(xué)家牛頓和德國數(shù)學(xué)家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創(chuàng)立工作,雖然這只是十分初步的工作。他們的

4、最大功績是把兩個貌似毫不相關(guān)的問題聯(lián)系在一起,一個是切線問題(微分學(xué)的中心問題),一個是求積問題(積分學(xué)的中心問題)。牛頓和萊布尼茨建立微積分的出發(fā)點是直觀的無窮小量,因此這門學(xué)科早期也稱為無窮小分析,這正是現(xiàn)在數(shù)學(xué)中分析學(xué)這一大分支名稱的來源。牛頓研究微積分著重于從運動學(xué)來考慮,萊布尼茨卻是側(cè)重于幾何學(xué)來考慮的。牛頓在1671年寫了《流數(shù)法和無窮級數(shù)》,這本書直到1736年才出版,它在這本書里指出,變量是由點、線、面的連續(xù)運動產(chǎn)生的,否定了以前自己認(rèn)為的變量是無窮小元素的靜止集合。他把連續(xù)變量叫做流動量,把這些流動量的導(dǎo)數(shù)叫做流數(shù)。牛頓在流數(shù)術(shù)中所提出的中心問題是:已知連續(xù)運動的路徑,求給定

5、時刻的速度(微分法);已知運動的速度求給定時間內(nèi)經(jīng)過的路程(積分法)。德國的萊布尼茨是一個博才多學(xué)的學(xué)者,1684年,他發(fā)表了現(xiàn)在世界上認(rèn)為是最早的微積分文獻(xiàn),這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用于分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現(xiàn)代的微分符號和基本微分法則。1686年,萊布尼茨發(fā)表了第一篇積分學(xué)的文獻(xiàn)。他是歷史上最偉大的符號學(xué)者之一,他所創(chuàng)設(shè)的微積分符號,遠(yuǎn)遠(yuǎn)優(yōu)于牛頓的符號,這對微積分的發(fā)展有極大的影響?,F(xiàn)在我們使用的微積分通用符號就是當(dāng)時萊布尼茨精心選用的。微積分學(xué)的創(chuàng)立,極大地

6、推動了數(shù)學(xué)的發(fā)展,過去很多初等數(shù)學(xué)束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學(xué)的非凡威力。 研究函數(shù),從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數(shù)學(xué)分析。 本來從廣義上說,數(shù)學(xué)分析包括微積分、函數(shù)論等許多分支學(xué)科,但是現(xiàn)在一般已習(xí)慣于把數(shù)學(xué)分析和微積分等同起來,數(shù)學(xué)分析成了微積分的同義詞,一提數(shù)學(xué)分析就知道是指微積分。微積分的基本概念和內(nèi)容包括微分學(xué)和積分學(xué)。 微分學(xué)的主要內(nèi)容包括:極限理論、導(dǎo)數(shù)、微分等。 積分學(xué)的主要內(nèi)容包括:定積分、不定積分等。 微積分是與應(yīng)用聯(lián)系著發(fā)展起來的,最初牛頓應(yīng)用微積分學(xué)及微分方程為了從萬有引力定律導(dǎo)出了開普勒行星運動三定律

7、。此后,微積分學(xué)極大的推動了數(shù)學(xué)的發(fā)展,同時也極大的推動了天文學(xué)、力學(xué)、物理學(xué)、化學(xué)、生物學(xué)、工程學(xué)、經(jīng)濟(jì)學(xué)等自然科學(xué)、社會科學(xué)及應(yīng)用科學(xué)各個分支中的發(fā)展。并在這些學(xué)科中有越來越廣泛的應(yīng)用,特別是計算機(jī)的出現(xiàn)更有助于這些應(yīng)用的不斷發(fā)展。 (二)、探析新課 問題1:物體從某一時刻開始運動,設(shè)s表示此物體經(jīng)過時間t走過的路程,顯然s是時間t的函數(shù),表示為s=s(t) 在運動的過程中測得了一些數(shù)據(jù),如下表: t/s 0 2 5 10 13 15 … s/m 0 6 9 20 32 44 … 物體在0~2s和10~13s這兩段時間內(nèi),那一段時間運動得快? 分析

8、:我們通常用平均速度來比較運動的快慢。 在0~2s這段時間內(nèi),物體的平均速度為; 在10~13s這段時間內(nèi),物體的平均速度為。 顯然,物體在后一段時間比前一段時間運動得快。 問題2:某病人吃完退燒藥,他的體溫變化如下圖所示: 比較時間x從0min到20min和從20min到30min體溫的變化情況,哪段時間體溫變化較快?如何刻畫體溫變化的快慢? 分析:根據(jù)圖像可以看出: 當(dāng)時間x從0min到20min時,體溫y從39℃變?yōu)?8.5℃,下降了0.5℃; 當(dāng)時間x從20min到30min時,體溫y從38.5℃變?yōu)?8℃,下降了0.5℃。 兩段時間下降相同的溫度,而后一段時間比

9、前一段時間短,所以后一段時間的體溫比前一段時間下降得快。 我們也可以比較在這兩段時間中,單位時間內(nèi)體溫的平均變化量,于是當(dāng)時間x從0min到20min時,體溫y相對于時間x的平均變化率為 (℃/min) 當(dāng)時間x從20min到30min時,體溫y相對于時間x的平均變化率為 (℃/min) 這里出現(xiàn)了負(fù)號,它表示體溫下降了,顯然,絕對值越大,下降的越快,這里體溫從20min到30min這段時間下降的比0min到20min這段時間要快。 (三)、小結(jié):1、對一般的函數(shù)y=f(x)來說,當(dāng)自變量x從變?yōu)闀r,函數(shù)值從f()變?yōu)?。平均變化率就是函?shù)增量與自變量增量之比,函數(shù)在內(nèi)的平均變化率為,如我們常用到年產(chǎn)量的平均變化率。2、函數(shù)的平均變化率與函數(shù)單調(diào)性之間的關(guān)系。 (四)、練習(xí):P27頁練習(xí)1,2,3,4題;習(xí)題2-1中 1 (五)作業(yè)布置:1、已知曲線上兩點的橫坐標(biāo)是和,求過兩點的直線斜率。 2、一物體按規(guī)律作變速直線運動,求該物體從2秒末到6秒末這段時間內(nèi)的平 均速度。 五、教后反思:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!