《高三文科數(shù)學(xué) 通用版二輪復(fù)習(xí):第1部分 專題3 突破點(diǎn)7 用樣本估計(jì)總體 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高三文科數(shù)學(xué) 通用版二輪復(fù)習(xí):第1部分 專題3 突破點(diǎn)7 用樣本估計(jì)總體 Word版含解析(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
突破點(diǎn)7 用樣本估計(jì)總體
提煉1 頻率分布直方圖 (1)頻率分布直方圖中橫坐標(biāo)表示組距,縱坐標(biāo)表示,頻率=組距.
(2)頻率分布直方圖中各小長方形的面積之和為1.
(3)利用頻率分布直方圖求眾數(shù)、中位數(shù)與平均數(shù),在頻率分布直方圖中:
①最高的小長方形底邊中點(diǎn)的橫坐標(biāo)即是眾數(shù);
②中位數(shù)左邊和右邊的小長方形的面積和是相等的;
③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點(diǎn)的橫坐標(biāo)之和.
提煉2 莖葉圖的優(yōu)點(diǎn) (1)所有的信息都可以從莖葉圖中得到.
(2)可以幫助分析樣本數(shù)據(jù)的大致頻率分布情況.
提煉3 樣本的數(shù)字
2、特征 (1)眾數(shù)、中位數(shù).
(2)樣本平均數(shù)=(x1+x2+…+xn).
(3)樣本方差s2=(x1-)2+(x2-)2+…+(xn-)2].
(4)樣本標(biāo)準(zhǔn)差
s=.
回訪 用樣本估計(jì)總體
1.(20xx全國乙卷)某公司計(jì)劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
圖
記x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y
3、表示1臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),n表示購機(jī)的同時購買的易損零件數(shù).
(1)若n=19,求y與x的函數(shù)解析式;
(2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計(jì)算這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買19個還是20個易損零件?
解] (1)當(dāng)x≤19時,y=3 800;
當(dāng)x>19時,y=3 800+500(x-19)=500x-5 700,
所以y與x的函數(shù)解析式為
y=(x∈N).4
4、分
(2)由柱狀圖知,需更換的零件數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故n的最小值為19.6分
(3)若每臺機(jī)器在購機(jī)同時都購買19個易損零件,則這100臺機(jī)器中有70臺在購買易損零件上的費(fèi)用為3 800,20臺的費(fèi)用為4 300,10臺的費(fèi)用為4 800,因此這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù)為(3 80070+4 30020+4 80010)=4 000.8分
若每臺機(jī)器在購機(jī)同時都購買20個易損零件,則這100臺機(jī)器中有90臺在購買易損零件上的費(fèi)用為4 000,10臺的費(fèi)用為4 500,因此這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù)為(4 000
5、90+4 50010)=4 050. 10分
比較兩個平均數(shù)可知,購買1臺機(jī)器的同時應(yīng)購買19個易損零件.12分
2.(20xx全國卷Ⅰ)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組
75,85)
85,95)
95,105)
105,115)
115,125)
頻數(shù)
6
26
38
22
8
(1)在下表中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)
6、量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
解] (1)
4分
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為=800.06+900.26+1000.38+1100.22+1200.08=100.6分
質(zhì)量指標(biāo)值的樣本方差為s2=(-20)20.06+(-10)20.26+00.38+1020.22+2020.08=104.
所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為100,方差的估計(jì)值為104.8分
(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計(jì)值為0.38+0.22+0.08=0.68.10分
由于該估計(jì)值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的
7、產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.12分
3.(20xx全國卷Ⅰ)為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗(yàn)的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2
3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1
2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3
8、
1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2
2.7 0.5
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
圖
解] (1)設(shè)A藥觀測數(shù)據(jù)的平均數(shù)為,B藥觀測數(shù)據(jù)的平均數(shù)為.
由觀測結(jié)果可得
=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,2分
=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+
9、1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.4分
由以上計(jì)算結(jié)果可得>,因此可看出A藥的療效更好.6分
(2)由觀測結(jié)果可繪制莖葉圖如圖:
9分
從以上莖葉圖可以看出,A藥療效的試驗(yàn)結(jié)果有的葉集中在莖“2.”,“3.”上,而B藥療效的試驗(yàn)結(jié)果有的葉集中在莖“0.”,“1.”上,由此可看出A藥的療效更好.12分
熱點(diǎn)題型1 頻率分布直方圖
題型分析:頻率分布直方圖多以生活中的實(shí)際問題為背景,考查學(xué)生運(yùn)用已知數(shù)據(jù)分析問題的能力,難度中等.
(20xx合肥三模)某高中為了解全校學(xué)生每周參與體育運(yùn)動的情況,隨機(jī)從全校學(xué)生中抽取100名學(xué)生,統(tǒng)計(jì)
10、他們每周參與體育運(yùn)動的時間如下:
每周參與運(yùn)動的時間(單位:小時)
0,4)
4,8)
8,12)
12,16)
16,20]
頻數(shù)
24
40
28
6
2
(1)作出樣本的頻率分布直方圖;
(2)①估計(jì)該校學(xué)生每周參與體育運(yùn)動的時間的中位數(shù)及平均數(shù);
②若該校有學(xué)生3 000人,根據(jù)以上抽樣調(diào)查數(shù)據(jù),估計(jì)該校學(xué)生每周參與體育運(yùn)動的時間不低于8小時的人數(shù).
解] (1)頻率分布直方圖如圖所示:
(2)①由數(shù)據(jù)估計(jì)中位數(shù)為4+4=6.6,8分
估計(jì)平均數(shù)為20.24+60.4+100.28+140.06+180.02=6.88.10分
②將頻率看作概率
11、知P(t≥8)=0.36,
∴3 0000.36=1 080.12分
解決該類問題的關(guān)鍵是正確理解已知數(shù)據(jù)的含義.掌握圖表中各個量的意義,通過圖表對已知數(shù)據(jù)進(jìn)行分析.
提醒:(1)小長方形的面積表示頻率,其縱軸是,而不是頻率.
(2)各組數(shù)據(jù)頻率之比等于對應(yīng)小長方形的高度之比.
變式訓(xùn)練1] 某電子商務(wù)公司隨機(jī)抽取1 000名網(wǎng)絡(luò)購物者進(jìn)行調(diào)查.這1 000名購物者網(wǎng)上購物金額(單位:萬元)均在區(qū)間0.3,0.9]內(nèi),樣本分組為:0.3,0.4),0.4,0.5),0.5,0.6),0.6,0.7),0.7,0.8),0.8,0.9],購物金額的頻率分布直方圖如下:
圖
12、73
電子商務(wù)公司決定給購物者發(fā)放優(yōu)惠券,其金額(單位:元)與購物金額關(guān)系如下:
購物金額分組
0.3,0.5)
0.5,0.6)
0.6,0.8)
0.8,0.9]
發(fā)放金額
50
100
150
200
(1)求這1 000名購物者獲得優(yōu)惠券金額的平均數(shù);
(2)以這1 000名購物者購物金額落在相應(yīng)區(qū)間的頻率作為概率,求一個購物者獲得優(yōu)惠券金額不少于150元的概率.
解] (1)購物者的購物金額x與獲得優(yōu)惠券金額y的頻率分布如下表:
x
0.3≤x<0.5
0.5≤x<0.6
0.6≤x<0.8
0.8≤x≤0.9
y
50
100
150
13、
200
頻率
0.4
0.3
0.28
0.02
這1 000名購物者獲得優(yōu)惠券金額的平均數(shù)為:
=96.4分
(2)由獲得優(yōu)惠券金額y與 購物金額x的對應(yīng)關(guān)系,有
P(y=150)=P(0.6≤x<0.8)=(2+0.8)0.1=0.28,
P(y=200)=P(0.8≤x≤0.9)=0.20.1=0.02,10分
從而,獲得優(yōu)惠券不少于150元的概率為
P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.12分
熱點(diǎn)題型2 莖葉圖
題型分析:結(jié)合樣本數(shù)據(jù)和莖葉圖對總體作出估計(jì)是高考命題的熱點(diǎn),應(yīng)引起足夠的重視,難度中等.
(2
14、0xx福州模擬)長時間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某校為了解A,B兩班學(xué)生手機(jī)上網(wǎng)的時長,分別從這兩個班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖74所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
圖74
(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì)哪個班的學(xué)生平均上網(wǎng)時間較長;
(2)從A班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機(jī)提取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.
解] (1)A班樣本數(shù)據(jù)的平均值為(9+11+14+20+31)=17.3分
由此估計(jì)A班學(xué)生每周平均上網(wǎng)時間17
15、小時;
B班樣本數(shù)據(jù)的平均值為(11+12+21+25+26)=19,由此估計(jì)B班學(xué)生每周平均上網(wǎng)時間較長.6分
(2)A班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)a有3個,分別為9,11,14,B班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)b也有3個,分別為11,12,21,從A班和B班的樣本數(shù)據(jù)中各隨機(jī)抽取一個共有:9種不同情況,分別為(9,11),(9,12),(9,21),(11,11),(11,21),(11,21),(14,11),(14,12),(14,21),
其中a>b的情況有(14,11),(14,12)兩種,
故a>b的概率P=.12分
作莖葉圖時先要弄清“莖”和“葉”分別代表什么,
16、根據(jù)莖葉圖,可以得到數(shù)據(jù)的眾數(shù)、中位數(shù),也可從圖中直接估計(jì)出兩組數(shù)據(jù)的平均數(shù)大小與穩(wěn)定性.
變式訓(xùn)練2] (名師押題)某車間20名工人年齡數(shù)據(jù)如下表:
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
解] (1)由題表中的數(shù)據(jù)易知,這20名工人年齡的眾數(shù)是30,極差為40-19=21.2分
(2)這20名工人年齡的莖葉圖如下:
6分
(3)這20名工人年齡的平均數(shù)=(191+283+293+305+314+323+401)=30,8分
故方差s2=1(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+1(40-30)2]=(121+12+3+0+4+12+100)=12.6.12分