高中數(shù)學(xué)人教A版選修11 第3章綜合檢測(cè)1 Word版含解析
(人教版)精品數(shù)學(xué)教學(xué)資料第三章 單元綜合檢測(cè)(一)(時(shí)間120分鐘滿分150分) 一、選擇題(本大題共12小題,每小題5分,共60分)1下列各式正確的是()A. (sina)cosa(a為常數(shù))B. (cosx)sinxC. (sinx)cosxD. (x5)x6解析:由導(dǎo)數(shù)公式知選項(xiàng)A中(sina)0;選項(xiàng)B中(cosx)sinx;選項(xiàng)D中(x5)5x6,只有C正確答案:C2曲線y在點(diǎn)(1,1)處的切線方程為()A. y2x1B. y2x1C. y2x3D. y2x2解析:y,kyx12.切線方程為y12(x1),即y2x1.答案:A3函數(shù)f(x)x2ln2x的單調(diào)遞減區(qū)間是()A.B.C.,D. ,解析:f(x)2x,當(dāng)0<x時(shí),f(x)0.答案:A4已知對(duì)任意實(shí)數(shù)x,有f(x)f(x),g(x)g(x)且x>0時(shí),f(x)>0,g(x)>0,則x<0時(shí)()A. f(x)>0,g(x)>0B. f(x)>0,g(x)<0C. f(x)<0,g(x)>0D. f(x)<0,g(x)<0解析:f(x)為奇函數(shù)且x>0時(shí)單調(diào)遞增,所以x<0時(shí)單調(diào)遞增,f(x)>0;g(x)為偶函數(shù)且x>0時(shí)單調(diào)遞增,所以x<0時(shí)單調(diào)遞減,g(x)<0.答案:B52014保定調(diào)研已知曲線ylnx的切線過(guò)原點(diǎn),則此切線的斜率為()A. eB. eC. D. 解析:ylnx的定義域?yàn)?0,),設(shè)切點(diǎn)為(x0,y0),則kf(x0),切線方程為yy0(xx0),又切線過(guò)點(diǎn)(0,0),代入切線方程得x0e,y01,kf(x0).答案:C62014山西忻州聯(lián)考函數(shù)f(x)x22cosx2的導(dǎo)函數(shù)f(x)的圖象大致是()解析:f(x)x2sinx,顯然是奇函數(shù),排除A.而f(x)2cosx0有無(wú)窮多個(gè)根,函數(shù)f(x)有無(wú)窮多個(gè)單調(diào)區(qū)間,排除C、D,故選B.答案:B72013課標(biāo)全國(guó)卷已知函數(shù)f(x)x3ax2bxc,下列結(jié)論中錯(cuò)誤的是()A. x0R,f(x0)0B. 函數(shù)yf(x)的圖象是中心對(duì)稱(chēng)圖形C. 若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(,x0)單調(diào)遞減D. 若x0是f(x)的極值點(diǎn),則f(x0)0解析:取a0,b3,c0,則f(x)x33x,則f(x)3(x1)(x1),知f(x)在(,1),(1,)上遞增,在(1,1)上遞減畫(huà)出f(x)的簡(jiǎn)圖,知C錯(cuò)誤答案:C8若函數(shù)f(x)滿足f(x)x3f(1)x2x,則f(1)的值為()A0B2C1D1解析:f(x)x22f(1)x1,所以f(1)12f(1)1,則f(1)0.答案:A9函數(shù)f(x)x3ax2(a6)x1有極大值和極小值,則a的取值范圍為()A1<a<2B3<a<6Ca<1或a>2Da<3或a>6解析:f(x)x3ax2(a6)x1有極大值和極小值,所以f(x)3x22axa60有兩個(gè)不相等的實(shí)數(shù)根由(2a)243(a6)4(a23a18)>0,解得a<3或a>6.答案:D10若函數(shù)f(x)在R上可導(dǎo),且f(x)>f(x),則當(dāng)a>b時(shí),下列不等式成立的是()A. eaf(a)>ebf(b)B. ebf(a)>eaf(b)C. ebf(b)>eaf(a)D. eaf(b)>ebf(a)解析:()<0,y單調(diào)遞減,又a>b,<,eaf(b)>ebf(a)答案:D11如圖是函數(shù)yf(x)的導(dǎo)函數(shù)yf(x)的圖象,則下列結(jié)論正確的是()A. 在區(qū)間(2,1)內(nèi)f(x)是增函數(shù)B. 在區(qū)間(1,3)內(nèi)f(x)是減函數(shù)C. 在區(qū)間(4,5)內(nèi)f(x)是增函數(shù)D. 在x2時(shí),f(x)取極小值解析:由圖象可知,當(dāng)x(4,5)時(shí),f(x)>0,f(x)在(4,5)內(nèi)為增函數(shù)答案:C122013湖北高考已知函數(shù)f(x)x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A. (,0)B. (0,)C. (0,1)D. (0,)解析:由題知,x>0,f(x)lnx12ax,由于函數(shù)f(x)有兩個(gè)極值點(diǎn),則f(x)0有兩個(gè)不等的正根,即函數(shù)ylnx1與y2ax的圖象有兩個(gè)不同的交點(diǎn)(x>0),則a>0;設(shè)函數(shù)ylnx1上任一點(diǎn)(x0,1lnx0)處的切線為l,則kly,當(dāng)l過(guò)坐標(biāo)原點(diǎn)時(shí),x01,令2a1a,結(jié)合圖象知0<a<,故選B.答案:B二、填空題(本大題共4小題,每小題5分,共20分)13一物體的運(yùn)動(dòng)方程為s7t28,則其在t_時(shí)的瞬時(shí)速度為1.解析:7t14t0,當(dāng) (7t14t0)1時(shí),t0.答案:14若函數(shù)f(x)在xa處的導(dǎo)數(shù)為A(aA0),函數(shù)F(x)f(x)A2x2滿足F(a)0,則A_.解析:f(x)|xaA,即f(a)A.又F(x)f(x)2A2x,且F(a)f(a)2aA2A2aA20.aA0,A.答案:152014唐山統(tǒng)考已知a>0,函數(shù)f(x)x3ax2bxc在區(qū)間2,2上單調(diào)遞減,則4ab的最大值為_(kāi)解析:f(x)x3ax2bxc,f(x)3x22axb,函數(shù)f(x)在區(qū)間2,2上單調(diào)遞減,f(x)3x22axb0在2,2上恒成立a>0,<0,f(x)maxf(2)0,即4ab12,4ab的最大值為12.答案:1216若函數(shù)f(x)在區(qū)間(m,2m1)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是_解析:f(x),令f(x)>0,得1<x<1,即函數(shù)f(x)的增區(qū)間為(1,1)又f(x)在(m,2m1)上單調(diào)遞增,所以解得1<m0.答案:(1,0三、解答題(本大題共6小題,共70分)17(10分)求函數(shù)y的單調(diào)區(qū)間解:y,y,解y<0,即<0,得x<0或x>.函數(shù)y.在(0,)上遞增,在(,0),(,)內(nèi)單調(diào)遞減18(12分)已知曲線yx3.(1)求曲線在x2處的切線方程;(2)求曲線過(guò)點(diǎn)(2,4)的切線方程解:(1)yx2,在點(diǎn)P(2,4)處的切線斜率kyx24.又x2時(shí)y4,在點(diǎn)P(2,4)處的切線方程:4xy40.(2)設(shè)曲線yx3與過(guò)點(diǎn)P(2,4)的切線相切于點(diǎn)A(x0,x),則切線斜率kyxx0x,切線方程為y(x)x(xx0),即yxxx.點(diǎn)P(2,4)在切線上,x3x40.(x01)(x02)20,解得x01,x02.故所求的切線方程為yx2或y4x4,即4xy40或xy20.19(12分)2014河南洛陽(yáng)統(tǒng)考已知函數(shù)f(x)exax2e2x.(1)若曲線yf(x)在點(diǎn)(2,f(2)處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若x>0時(shí),總有f(x)>e2x,求實(shí)數(shù)a的取值范圍解:(1)由f(x)ex2axe2得:yf(x)在點(diǎn)(2,f(2)處的切線斜率k4a0,則a0.此時(shí)f(x)exe2x,f(x)exe2.由f(x)0,得x2.當(dāng)x(,2)時(shí),f(x)<0,f(x)在(,2)上單調(diào)遞減;當(dāng)x(2,)時(shí),f(x)>0,f(x)在(2,)上單調(diào)遞增(2)由f(x)>e2x得:a>.設(shè)g(x),x>0,則g(x).當(dāng)0<x<2時(shí),g(x)>0,g(x)在(0,2)上單調(diào)遞增;當(dāng)x>2時(shí),g(x)<0,g(x)在(2,)上單調(diào)遞減g(x)g(2).因此,a的取值范圍為(,)20(12分)已知某公司生產(chǎn)的某品牌服裝的年固定成本為10萬(wàn)元,每生產(chǎn)1千件,需另投入1.9萬(wàn)元,設(shè)R(x)(單位:萬(wàn)元)為銷(xiāo)售收入,據(jù)市場(chǎng)調(diào)查知R(x)其中x是年產(chǎn)量(單位:千件)(1)寫(xiě)出年利潤(rùn)W關(guān)于年產(chǎn)量x的函數(shù)關(guān)系式;(2)年產(chǎn)量為多少時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大?解:(1)依題意有:W即W(2)設(shè)f(x)x38.1x10(0x10),f(x)x28.1,由f(x)0,得x9或x9(舍去)當(dāng)0x9時(shí),f(x)0;當(dāng)9x10時(shí),f(x)0,所以當(dāng)x9時(shí),f(x)取得最大值38.6.當(dāng)x>10時(shí),1.9x<<38.6.所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大21(12分)2013浙江高考已知aR,函數(shù)f(x)2x33(a1)x26ax.(1)若a1,求曲線yf(x)在點(diǎn)(2,f(2)處的切線方程;(2)若|a|>1,求f(x)在閉區(qū)間0,2|a|上的最小值解:(1)當(dāng)a1時(shí),f(x)6x212x6,所以f(2)6.又因?yàn)閒(2)4,所以切線方程為y6x8.(2)記g(a)為f(x)在閉區(qū)間0,2|a|上的最小值f(x)6x26(a1)x6a6(x1)(xa)令f(x)0,得到x11,x2a.當(dāng)a>1時(shí),x0(0,1)1(1,a)a(a,2a)2af(x)00f(x)0單調(diào)遞增極大值3a1單調(diào)遞減極小值a2(3a)單調(diào)遞增4a3比較f(0)0和f(a)a2(3a)的大小可得g(a)當(dāng)a<1時(shí),x0(0,1)1(1,2a)2af(x)0f(x)0單調(diào)遞減極小值3a1單調(diào)遞增28a324a2得g(a)3a1.綜上所述,f(x)在閉區(qū)間0,2|a|上的最小值為g(a)22(12分)2014長(zhǎng)春高二檢測(cè)設(shè)函數(shù)f(x)x2mlnx,h(x)x2xa.(1)當(dāng)a0時(shí),f(x)h(x)在(1,)上恒成立,求實(shí)數(shù)m的取值范圍;(2)當(dāng)m2時(shí),若函數(shù)k(x)f(x)h(x)在1,3上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍解:(1)由a0,f(x)h(x)可得mlnxx,即m.記(x),則f(x)h(x)在(1,)上恒成立等價(jià)于m(x)min,求得(x),當(dāng)x(1,e)時(shí):(x)<0;當(dāng)x(e,)時(shí),(x)>0故(x)在xe處取得極小值,也是最小值,即(x)min(e)e,故me.(2)函數(shù)k(x)f(x)h(x)在1,3上恰有兩個(gè)不同的零點(diǎn)等價(jià)于方程x2lnxa,在1,3上恰有兩個(gè)相異實(shí)根令g(x)x2lnx,則g(x)1當(dāng)x1,2)時(shí),g(x)<0;當(dāng)x(2,3時(shí),g(x)>0.g(x)在1,2)上是單調(diào)遞減函數(shù),在(2,3上是單調(diào)遞增函數(shù)故g(x)ming(2)22ln 2.又g(1)1,g(3)32ln 3,g(1)>g(3),只需g(2)<ag(3)故a的取值范圍是(22ln 2,32ln 3